Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Abstract measure
Measurable functions
mbfmfun
Next ⟩
mbfmf
Metamath Proof Explorer
Ascii
Unicode
Theorem
mbfmfun
Description:
A measurable function is a function.
(Contributed by
Thierry Arnoux
, 24-Jan-2017)
Ref
Expression
Hypothesis
mbfmfun.1
⊢
φ
→
F
∈
⋃
ran
⁡
MblFn
μ
Assertion
mbfmfun
⊢
φ
→
Fun
⁡
F
Proof
Step
Hyp
Ref
Expression
1
mbfmfun.1
⊢
φ
→
F
∈
⋃
ran
⁡
MblFn
μ
2
elunirnmbfm
⊢
F
∈
⋃
ran
⁡
MblFn
μ
↔
∃
s
∈
⋃
ran
⁡
sigAlgebra
∃
t
∈
⋃
ran
⁡
sigAlgebra
F
∈
⋃
t
⋃
s
∧
∀
x
∈
t
F
-1
x
∈
s
3
2
biimpi
⊢
F
∈
⋃
ran
⁡
MblFn
μ
→
∃
s
∈
⋃
ran
⁡
sigAlgebra
∃
t
∈
⋃
ran
⁡
sigAlgebra
F
∈
⋃
t
⋃
s
∧
∀
x
∈
t
F
-1
x
∈
s
4
elmapfun
⊢
F
∈
⋃
t
⋃
s
→
Fun
⁡
F
5
4
adantr
⊢
F
∈
⋃
t
⋃
s
∧
∀
x
∈
t
F
-1
x
∈
s
→
Fun
⁡
F
6
5
rexlimivw
⊢
∃
t
∈
⋃
ran
⁡
sigAlgebra
F
∈
⋃
t
⋃
s
∧
∀
x
∈
t
F
-1
x
∈
s
→
Fun
⁡
F
7
6
rexlimivw
⊢
∃
s
∈
⋃
ran
⁡
sigAlgebra
∃
t
∈
⋃
ran
⁡
sigAlgebra
F
∈
⋃
t
⋃
s
∧
∀
x
∈
t
F
-1
x
∈
s
→
Fun
⁡
F
8
1
3
7
3syl
⊢
φ
→
Fun
⁡
F