Metamath Proof Explorer


Theorem mbfmfun

Description: A measurable function is a function. (Contributed by Thierry Arnoux, 24-Jan-2017)

Ref Expression
Hypothesis mbfmfun.1 φ F ran MblFn μ
Assertion mbfmfun φ Fun F

Proof

Step Hyp Ref Expression
1 mbfmfun.1 φ F ran MblFn μ
2 elunirnmbfm F ran MblFn μ s ran sigAlgebra t ran sigAlgebra F t s x t F -1 x s
3 2 biimpi F ran MblFn μ s ran sigAlgebra t ran sigAlgebra F t s x t F -1 x s
4 elmapfun F t s Fun F
5 4 adantr F t s x t F -1 x s Fun F
6 5 rexlimivw t ran sigAlgebra F t s x t F -1 x s Fun F
7 6 rexlimivw s ran sigAlgebra t ran sigAlgebra F t s x t F -1 x s Fun F
8 1 3 7 3syl φ Fun F