Metamath Proof Explorer


Theorem mbfmf

Description: A measurable function as a function with domain and codomain. (Contributed by Thierry Arnoux, 25-Jan-2017)

Ref Expression
Hypotheses mbfmf.1 φ S ran sigAlgebra
mbfmf.2 φ T ran sigAlgebra
mbfmf.3 φ F S MblFn μ T
Assertion mbfmf φ F : S T

Proof

Step Hyp Ref Expression
1 mbfmf.1 φ S ran sigAlgebra
2 mbfmf.2 φ T ran sigAlgebra
3 mbfmf.3 φ F S MblFn μ T
4 1 2 ismbfm φ F S MblFn μ T F T S x T F -1 x S
5 3 4 mpbid φ F T S x T F -1 x S
6 5 simpld φ F T S
7 elmapi F T S F : S T
8 6 7 syl φ F : S T