Metamath Proof Explorer


Theorem mbfmf

Description: A measurable function as a function with domain and codomain. (Contributed by Thierry Arnoux, 25-Jan-2017)

Ref Expression
Hypotheses mbfmf.1 ( 𝜑𝑆 ran sigAlgebra )
mbfmf.2 ( 𝜑𝑇 ran sigAlgebra )
mbfmf.3 ( 𝜑𝐹 ∈ ( 𝑆 MblFnM 𝑇 ) )
Assertion mbfmf ( 𝜑𝐹 : 𝑆 𝑇 )

Proof

Step Hyp Ref Expression
1 mbfmf.1 ( 𝜑𝑆 ran sigAlgebra )
2 mbfmf.2 ( 𝜑𝑇 ran sigAlgebra )
3 mbfmf.3 ( 𝜑𝐹 ∈ ( 𝑆 MblFnM 𝑇 ) )
4 1 2 ismbfm ( 𝜑 → ( 𝐹 ∈ ( 𝑆 MblFnM 𝑇 ) ↔ ( 𝐹 ∈ ( 𝑇m 𝑆 ) ∧ ∀ 𝑥𝑇 ( 𝐹𝑥 ) ∈ 𝑆 ) ) )
5 3 4 mpbid ( 𝜑 → ( 𝐹 ∈ ( 𝑇m 𝑆 ) ∧ ∀ 𝑥𝑇 ( 𝐹𝑥 ) ∈ 𝑆 ) )
6 5 simpld ( 𝜑𝐹 ∈ ( 𝑇m 𝑆 ) )
7 elmapi ( 𝐹 ∈ ( 𝑇m 𝑆 ) → 𝐹 : 𝑆 𝑇 )
8 6 7 syl ( 𝜑𝐹 : 𝑆 𝑇 )