Description: A measurable function as a function with domain and codomain. (Contributed by Thierry Arnoux, 25-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbfmf.1 | ⊢ ( 𝜑 → 𝑆 ∈ ∪ ran sigAlgebra ) | |
| mbfmf.2 | ⊢ ( 𝜑 → 𝑇 ∈ ∪ ran sigAlgebra ) | ||
| mbfmf.3 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 MblFnM 𝑇 ) ) | ||
| Assertion | mbfmf | ⊢ ( 𝜑 → 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfmf.1 | ⊢ ( 𝜑 → 𝑆 ∈ ∪ ran sigAlgebra ) | |
| 2 | mbfmf.2 | ⊢ ( 𝜑 → 𝑇 ∈ ∪ ran sigAlgebra ) | |
| 3 | mbfmf.3 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 MblFnM 𝑇 ) ) | |
| 4 | 1 2 | ismbfm | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑆 MblFnM 𝑇 ) ↔ ( 𝐹 ∈ ( ∪ 𝑇 ↑m ∪ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑇 ( ◡ 𝐹 “ 𝑥 ) ∈ 𝑆 ) ) ) |
| 5 | 3 4 | mpbid | ⊢ ( 𝜑 → ( 𝐹 ∈ ( ∪ 𝑇 ↑m ∪ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑇 ( ◡ 𝐹 “ 𝑥 ) ∈ 𝑆 ) ) |
| 6 | 5 | simpld | ⊢ ( 𝜑 → 𝐹 ∈ ( ∪ 𝑇 ↑m ∪ 𝑆 ) ) |
| 7 | elmapi | ⊢ ( 𝐹 ∈ ( ∪ 𝑇 ↑m ∪ 𝑆 ) → 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ) | |
| 8 | 6 7 | syl | ⊢ ( 𝜑 → 𝐹 : ∪ 𝑆 ⟶ ∪ 𝑇 ) |