Metamath Proof Explorer


Theorem isanmbfm

Description: The predicate to be a measurable function. (Contributed by Thierry Arnoux, 30-Jan-2017)

Ref Expression
Hypotheses mbfmf.1 ( 𝜑𝑆 ran sigAlgebra )
mbfmf.2 ( 𝜑𝑇 ran sigAlgebra )
mbfmf.3 ( 𝜑𝐹 ∈ ( 𝑆 MblFnM 𝑇 ) )
Assertion isanmbfm ( 𝜑𝐹 ran MblFnM )

Proof

Step Hyp Ref Expression
1 mbfmf.1 ( 𝜑𝑆 ran sigAlgebra )
2 mbfmf.2 ( 𝜑𝑇 ran sigAlgebra )
3 mbfmf.3 ( 𝜑𝐹 ∈ ( 𝑆 MblFnM 𝑇 ) )
4 1 2 ismbfm ( 𝜑 → ( 𝐹 ∈ ( 𝑆 MblFnM 𝑇 ) ↔ ( 𝐹 ∈ ( 𝑇m 𝑆 ) ∧ ∀ 𝑥𝑇 ( 𝐹𝑥 ) ∈ 𝑆 ) ) )
5 3 4 mpbid ( 𝜑 → ( 𝐹 ∈ ( 𝑇m 𝑆 ) ∧ ∀ 𝑥𝑇 ( 𝐹𝑥 ) ∈ 𝑆 ) )
6 unieq ( 𝑠 = 𝑆 𝑠 = 𝑆 )
7 6 oveq2d ( 𝑠 = 𝑆 → ( 𝑡m 𝑠 ) = ( 𝑡m 𝑆 ) )
8 7 eleq2d ( 𝑠 = 𝑆 → ( 𝐹 ∈ ( 𝑡m 𝑠 ) ↔ 𝐹 ∈ ( 𝑡m 𝑆 ) ) )
9 eleq2 ( 𝑠 = 𝑆 → ( ( 𝐹𝑥 ) ∈ 𝑠 ↔ ( 𝐹𝑥 ) ∈ 𝑆 ) )
10 9 ralbidv ( 𝑠 = 𝑆 → ( ∀ 𝑥𝑡 ( 𝐹𝑥 ) ∈ 𝑠 ↔ ∀ 𝑥𝑡 ( 𝐹𝑥 ) ∈ 𝑆 ) )
11 8 10 anbi12d ( 𝑠 = 𝑆 → ( ( 𝐹 ∈ ( 𝑡m 𝑠 ) ∧ ∀ 𝑥𝑡 ( 𝐹𝑥 ) ∈ 𝑠 ) ↔ ( 𝐹 ∈ ( 𝑡m 𝑆 ) ∧ ∀ 𝑥𝑡 ( 𝐹𝑥 ) ∈ 𝑆 ) ) )
12 unieq ( 𝑡 = 𝑇 𝑡 = 𝑇 )
13 12 oveq1d ( 𝑡 = 𝑇 → ( 𝑡m 𝑆 ) = ( 𝑇m 𝑆 ) )
14 13 eleq2d ( 𝑡 = 𝑇 → ( 𝐹 ∈ ( 𝑡m 𝑆 ) ↔ 𝐹 ∈ ( 𝑇m 𝑆 ) ) )
15 raleq ( 𝑡 = 𝑇 → ( ∀ 𝑥𝑡 ( 𝐹𝑥 ) ∈ 𝑆 ↔ ∀ 𝑥𝑇 ( 𝐹𝑥 ) ∈ 𝑆 ) )
16 14 15 anbi12d ( 𝑡 = 𝑇 → ( ( 𝐹 ∈ ( 𝑡m 𝑆 ) ∧ ∀ 𝑥𝑡 ( 𝐹𝑥 ) ∈ 𝑆 ) ↔ ( 𝐹 ∈ ( 𝑇m 𝑆 ) ∧ ∀ 𝑥𝑇 ( 𝐹𝑥 ) ∈ 𝑆 ) ) )
17 11 16 rspc2ev ( ( 𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra ∧ ( 𝐹 ∈ ( 𝑇m 𝑆 ) ∧ ∀ 𝑥𝑇 ( 𝐹𝑥 ) ∈ 𝑆 ) ) → ∃ 𝑠 ran sigAlgebra ∃ 𝑡 ran sigAlgebra ( 𝐹 ∈ ( 𝑡m 𝑠 ) ∧ ∀ 𝑥𝑡 ( 𝐹𝑥 ) ∈ 𝑠 ) )
18 1 2 5 17 syl3anc ( 𝜑 → ∃ 𝑠 ran sigAlgebra ∃ 𝑡 ran sigAlgebra ( 𝐹 ∈ ( 𝑡m 𝑠 ) ∧ ∀ 𝑥𝑡 ( 𝐹𝑥 ) ∈ 𝑠 ) )
19 elunirnmbfm ( 𝐹 ran MblFnM ↔ ∃ 𝑠 ran sigAlgebra ∃ 𝑡 ran sigAlgebra ( 𝐹 ∈ ( 𝑡m 𝑠 ) ∧ ∀ 𝑥𝑡 ( 𝐹𝑥 ) ∈ 𝑠 ) )
20 18 19 sylibr ( 𝜑𝐹 ran MblFnM )