Metamath Proof Explorer


Theorem isanmbfm

Description: The predicate to be a measurable function. (Contributed by Thierry Arnoux, 30-Jan-2017) Remove hypotheses. (Revised by SN, 13-Jan-2025)

Ref Expression
Hypothesis isanmbfm.1 ( 𝜑𝐹 ∈ ( 𝑆 MblFnM 𝑇 ) )
Assertion isanmbfm ( 𝜑𝐹 ran MblFnM )

Proof

Step Hyp Ref Expression
1 isanmbfm.1 ( 𝜑𝐹 ∈ ( 𝑆 MblFnM 𝑇 ) )
2 ovssunirn ( 𝑆 MblFnM 𝑇 ) ⊆ ran MblFnM
3 2 1 sselid ( 𝜑𝐹 ran MblFnM )