Metamath Proof Explorer


Theorem isanmbfm

Description: The predicate to be a measurable function. (Contributed by Thierry Arnoux, 30-Jan-2017) Remove hypotheses. (Revised by SN, 13-Jan-2025)

Ref Expression
Hypothesis isanmbfm.1
|- ( ph -> F e. ( S MblFnM T ) )
Assertion isanmbfm
|- ( ph -> F e. U. ran MblFnM )

Proof

Step Hyp Ref Expression
1 isanmbfm.1
 |-  ( ph -> F e. ( S MblFnM T ) )
2 ovssunirn
 |-  ( S MblFnM T ) C_ U. ran MblFnM
3 2 1 sselid
 |-  ( ph -> F e. U. ran MblFnM )