Description: A measurable function to a Borel Set is measurable. (Contributed by Thierry Arnoux, 24-Jan-2017) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbfmbfmOLD.1 | |- ( ph -> M e. U. ran measures ) |
|
| mbfmbfmOLD.2 | |- ( ph -> J e. Top ) |
||
| mbfmbfmOLD.3 | |- ( ph -> F e. ( dom M MblFnM ( sigaGen ` J ) ) ) |
||
| Assertion | mbfmbfmOLD | |- ( ph -> F e. U. ran MblFnM ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfmbfmOLD.1 | |- ( ph -> M e. U. ran measures ) |
|
| 2 | mbfmbfmOLD.2 | |- ( ph -> J e. Top ) |
|
| 3 | mbfmbfmOLD.3 | |- ( ph -> F e. ( dom M MblFnM ( sigaGen ` J ) ) ) |
|
| 4 | 3 | isanmbfm | |- ( ph -> F e. U. ran MblFnM ) |