Metamath Proof Explorer


Theorem mbfmbfmOLD

Description: A measurable function to a Borel Set is measurable. (Contributed by Thierry Arnoux, 24-Jan-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses mbfmbfmOLD.1
|- ( ph -> M e. U. ran measures )
mbfmbfmOLD.2
|- ( ph -> J e. Top )
mbfmbfmOLD.3
|- ( ph -> F e. ( dom M MblFnM ( sigaGen ` J ) ) )
Assertion mbfmbfmOLD
|- ( ph -> F e. U. ran MblFnM )

Proof

Step Hyp Ref Expression
1 mbfmbfmOLD.1
 |-  ( ph -> M e. U. ran measures )
2 mbfmbfmOLD.2
 |-  ( ph -> J e. Top )
3 mbfmbfmOLD.3
 |-  ( ph -> F e. ( dom M MblFnM ( sigaGen ` J ) ) )
4 3 isanmbfm
 |-  ( ph -> F e. U. ran MblFnM )