Metamath Proof Explorer


Theorem mbfmbfm

Description: A measurable function to a Borel Set is measurable. (Contributed by Thierry Arnoux, 24-Jan-2017)

Ref Expression
Hypotheses mbfmbfm.1
|- ( ph -> M e. U. ran measures )
mbfmbfm.2
|- ( ph -> J e. Top )
mbfmbfm.3
|- ( ph -> F e. ( dom M MblFnM ( sigaGen ` J ) ) )
Assertion mbfmbfm
|- ( ph -> F e. U. ran MblFnM )

Proof

Step Hyp Ref Expression
1 mbfmbfm.1
 |-  ( ph -> M e. U. ran measures )
2 mbfmbfm.2
 |-  ( ph -> J e. Top )
3 mbfmbfm.3
 |-  ( ph -> F e. ( dom M MblFnM ( sigaGen ` J ) ) )
4 measbasedom
 |-  ( M e. U. ran measures <-> M e. ( measures ` dom M ) )
5 4 biimpi
 |-  ( M e. U. ran measures -> M e. ( measures ` dom M ) )
6 measbase
 |-  ( M e. ( measures ` dom M ) -> dom M e. U. ran sigAlgebra )
7 1 5 6 3syl
 |-  ( ph -> dom M e. U. ran sigAlgebra )
8 2 sgsiga
 |-  ( ph -> ( sigaGen ` J ) e. U. ran sigAlgebra )
9 7 8 3 isanmbfm
 |-  ( ph -> F e. U. ran MblFnM )