Metamath Proof Explorer


Theorem mbfmbfm

Description: A measurable function to a Borel Set is measurable. (Contributed by Thierry Arnoux, 24-Jan-2017) Remove hypotheses. (Revised by SN, 13-Jan-2025)

Ref Expression
Hypothesis mbfmbfm.1
|- ( ph -> F e. ( dom M MblFnM ( sigaGen ` J ) ) )
Assertion mbfmbfm
|- ( ph -> F e. U. ran MblFnM )

Proof

Step Hyp Ref Expression
1 mbfmbfm.1
 |-  ( ph -> F e. ( dom M MblFnM ( sigaGen ` J ) ) )
2 1 isanmbfm
 |-  ( ph -> F e. U. ran MblFnM )