Step |
Hyp |
Ref |
Expression |
1 |
|
mbfmbfm.1 |
|- ( ph -> M e. U. ran measures ) |
2 |
|
mbfmbfm.2 |
|- ( ph -> J e. Top ) |
3 |
|
mbfmbfm.3 |
|- ( ph -> F e. ( dom M MblFnM ( sigaGen ` J ) ) ) |
4 |
|
measbasedom |
|- ( M e. U. ran measures <-> M e. ( measures ` dom M ) ) |
5 |
4
|
biimpi |
|- ( M e. U. ran measures -> M e. ( measures ` dom M ) ) |
6 |
|
measbase |
|- ( M e. ( measures ` dom M ) -> dom M e. U. ran sigAlgebra ) |
7 |
1 5 6
|
3syl |
|- ( ph -> dom M e. U. ran sigAlgebra ) |
8 |
2
|
sgsiga |
|- ( ph -> ( sigaGen ` J ) e. U. ran sigAlgebra ) |
9 |
7 8 3
|
isanmbfm |
|- ( ph -> F e. U. ran MblFnM ) |