Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Abstract measure
Measurable functions
mbfmbfm
Metamath Proof Explorer
Description: A measurable function to a Borel Set is measurable. (Contributed by Thierry Arnoux , 24-Jan-2017) Remove hypotheses. (Revised by SN , 13-Jan-2025)
Ref
Expression
Hypothesis
mbfmbfm.1
⊢ φ → F ∈ dom ⁡ M MblFn μ 𝛔 ⁡ J
Assertion
mbfmbfm
⊢ φ → F ∈ ⋃ ran ⁡ MblFn μ
Proof
Step
Hyp
Ref
Expression
1
mbfmbfm.1
⊢ φ → F ∈ dom ⁡ M MblFn μ 𝛔 ⁡ J
2
1
isanmbfm
⊢ φ → F ∈ ⋃ ran ⁡ MblFn μ