Metamath Proof Explorer


Theorem measbase

Description: The base set of a measure is a sigma-algebra. (Contributed by Thierry Arnoux, 25-Dec-2016)

Ref Expression
Assertion measbase M measures S S ran sigAlgebra

Proof

Step Hyp Ref Expression
1 elfvdm M measures S S dom measures
2 vex s V
3 ovex 0 +∞ V
4 mapex s V 0 +∞ V m | m : s 0 +∞ V
5 2 3 4 mp2an m | m : s 0 +∞ V
6 simp1 m : s 0 +∞ m = 0 x 𝒫 s x ω Disj y x y m x = * y x m y m : s 0 +∞
7 6 ss2abi m | m : s 0 +∞ m = 0 x 𝒫 s x ω Disj y x y m x = * y x m y m | m : s 0 +∞
8 5 7 ssexi m | m : s 0 +∞ m = 0 x 𝒫 s x ω Disj y x y m x = * y x m y V
9 df-meas measures = s ran sigAlgebra m | m : s 0 +∞ m = 0 x 𝒫 s x ω Disj y x y m x = * y x m y
10 8 9 dmmpti dom measures = ran sigAlgebra
11 1 10 eleqtrdi M measures S S ran sigAlgebra