Metamath Proof Explorer


Theorem measbase

Description: The base set of a measure is a sigma-algebra. (Contributed by Thierry Arnoux, 25-Dec-2016)

Ref Expression
Assertion measbase MmeasuresSSransigAlgebra

Proof

Step Hyp Ref Expression
1 elfvdm MmeasuresSSdommeasures
2 vex sV
3 ovex 0+∞V
4 mapex sV0+∞Vm|m:s0+∞V
5 2 3 4 mp2an m|m:s0+∞V
6 simp1 m:s0+∞m=0x𝒫sxωDisjyxymx=*yxmym:s0+∞
7 6 ss2abi m|m:s0+∞m=0x𝒫sxωDisjyxymx=*yxmym|m:s0+∞
8 5 7 ssexi m|m:s0+∞m=0x𝒫sxωDisjyxymx=*yxmyV
9 df-meas measures=sransigAlgebram|m:s0+∞m=0x𝒫sxωDisjyxymx=*yxmy
10 8 9 dmmpti dommeasures=ransigAlgebra
11 1 10 eleqtrdi MmeasuresSSransigAlgebra