Metamath Proof Explorer


Theorem mapex

Description: The class of all functions mapping one set to another is a set. Remark after Definition 10.24 of Kunen p. 31. (Contributed by Raph Levien, 4-Dec-2003)

Ref Expression
Assertion mapex ACBDf|f:ABV

Proof

Step Hyp Ref Expression
1 fssxp f:ABfA×B
2 1 ss2abi f|f:ABf|fA×B
3 df-pw 𝒫A×B=f|fA×B
4 2 3 sseqtrri f|f:AB𝒫A×B
5 xpexg ACBDA×BV
6 5 pwexd ACBD𝒫A×BV
7 ssexg f|f:AB𝒫A×B𝒫A×BVf|f:ABV
8 4 6 7 sylancr ACBDf|f:ABV