Step |
Hyp |
Ref |
Expression |
1 |
|
elfvdm |
|- ( M e. ( measures ` S ) -> S e. dom measures ) |
2 |
|
vex |
|- s e. _V |
3 |
|
ovex |
|- ( 0 [,] +oo ) e. _V |
4 |
|
mapex |
|- ( ( s e. _V /\ ( 0 [,] +oo ) e. _V ) -> { m | m : s --> ( 0 [,] +oo ) } e. _V ) |
5 |
2 3 4
|
mp2an |
|- { m | m : s --> ( 0 [,] +oo ) } e. _V |
6 |
|
simp1 |
|- ( ( m : s --> ( 0 [,] +oo ) /\ ( m ` (/) ) = 0 /\ A. x e. ~P s ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( m ` U. x ) = sum* y e. x ( m ` y ) ) ) -> m : s --> ( 0 [,] +oo ) ) |
7 |
6
|
ss2abi |
|- { m | ( m : s --> ( 0 [,] +oo ) /\ ( m ` (/) ) = 0 /\ A. x e. ~P s ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( m ` U. x ) = sum* y e. x ( m ` y ) ) ) } C_ { m | m : s --> ( 0 [,] +oo ) } |
8 |
5 7
|
ssexi |
|- { m | ( m : s --> ( 0 [,] +oo ) /\ ( m ` (/) ) = 0 /\ A. x e. ~P s ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( m ` U. x ) = sum* y e. x ( m ` y ) ) ) } e. _V |
9 |
|
df-meas |
|- measures = ( s e. U. ran sigAlgebra |-> { m | ( m : s --> ( 0 [,] +oo ) /\ ( m ` (/) ) = 0 /\ A. x e. ~P s ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( m ` U. x ) = sum* y e. x ( m ` y ) ) ) } ) |
10 |
8 9
|
dmmpti |
|- dom measures = U. ran sigAlgebra |
11 |
1 10
|
eleqtrdi |
|- ( M e. ( measures ` S ) -> S e. U. ran sigAlgebra ) |