Step |
Hyp |
Ref |
Expression |
0 |
|
cmeas |
|- measures |
1 |
|
vs |
|- s |
2 |
|
csiga |
|- sigAlgebra |
3 |
2
|
crn |
|- ran sigAlgebra |
4 |
3
|
cuni |
|- U. ran sigAlgebra |
5 |
|
vm |
|- m |
6 |
5
|
cv |
|- m |
7 |
1
|
cv |
|- s |
8 |
|
cc0 |
|- 0 |
9 |
|
cicc |
|- [,] |
10 |
|
cpnf |
|- +oo |
11 |
8 10 9
|
co |
|- ( 0 [,] +oo ) |
12 |
7 11 6
|
wf |
|- m : s --> ( 0 [,] +oo ) |
13 |
|
c0 |
|- (/) |
14 |
13 6
|
cfv |
|- ( m ` (/) ) |
15 |
14 8
|
wceq |
|- ( m ` (/) ) = 0 |
16 |
|
vx |
|- x |
17 |
7
|
cpw |
|- ~P s |
18 |
16
|
cv |
|- x |
19 |
|
cdom |
|- ~<_ |
20 |
|
com |
|- _om |
21 |
18 20 19
|
wbr |
|- x ~<_ _om |
22 |
|
vy |
|- y |
23 |
22
|
cv |
|- y |
24 |
22 18 23
|
wdisj |
|- Disj_ y e. x y |
25 |
21 24
|
wa |
|- ( x ~<_ _om /\ Disj_ y e. x y ) |
26 |
18
|
cuni |
|- U. x |
27 |
26 6
|
cfv |
|- ( m ` U. x ) |
28 |
23 6
|
cfv |
|- ( m ` y ) |
29 |
18 28 22
|
cesum |
|- sum* y e. x ( m ` y ) |
30 |
27 29
|
wceq |
|- ( m ` U. x ) = sum* y e. x ( m ` y ) |
31 |
25 30
|
wi |
|- ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( m ` U. x ) = sum* y e. x ( m ` y ) ) |
32 |
31 16 17
|
wral |
|- A. x e. ~P s ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( m ` U. x ) = sum* y e. x ( m ` y ) ) |
33 |
12 15 32
|
w3a |
|- ( m : s --> ( 0 [,] +oo ) /\ ( m ` (/) ) = 0 /\ A. x e. ~P s ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( m ` U. x ) = sum* y e. x ( m ` y ) ) ) |
34 |
33 5
|
cab |
|- { m | ( m : s --> ( 0 [,] +oo ) /\ ( m ` (/) ) = 0 /\ A. x e. ~P s ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( m ` U. x ) = sum* y e. x ( m ` y ) ) ) } |
35 |
1 4 34
|
cmpt |
|- ( s e. U. ran sigAlgebra |-> { m | ( m : s --> ( 0 [,] +oo ) /\ ( m ` (/) ) = 0 /\ A. x e. ~P s ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( m ` U. x ) = sum* y e. x ( m ` y ) ) ) } ) |
36 |
0 35
|
wceq |
|- measures = ( s e. U. ran sigAlgebra |-> { m | ( m : s --> ( 0 [,] +oo ) /\ ( m ` (/) ) = 0 /\ A. x e. ~P s ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( m ` U. x ) = sum* y e. x ( m ` y ) ) ) } ) |