Step |
Hyp |
Ref |
Expression |
0 |
|
cmeas |
⊢ measures |
1 |
|
vs |
⊢ 𝑠 |
2 |
|
csiga |
⊢ sigAlgebra |
3 |
2
|
crn |
⊢ ran sigAlgebra |
4 |
3
|
cuni |
⊢ ∪ ran sigAlgebra |
5 |
|
vm |
⊢ 𝑚 |
6 |
5
|
cv |
⊢ 𝑚 |
7 |
1
|
cv |
⊢ 𝑠 |
8 |
|
cc0 |
⊢ 0 |
9 |
|
cicc |
⊢ [,] |
10 |
|
cpnf |
⊢ +∞ |
11 |
8 10 9
|
co |
⊢ ( 0 [,] +∞ ) |
12 |
7 11 6
|
wf |
⊢ 𝑚 : 𝑠 ⟶ ( 0 [,] +∞ ) |
13 |
|
c0 |
⊢ ∅ |
14 |
13 6
|
cfv |
⊢ ( 𝑚 ‘ ∅ ) |
15 |
14 8
|
wceq |
⊢ ( 𝑚 ‘ ∅ ) = 0 |
16 |
|
vx |
⊢ 𝑥 |
17 |
7
|
cpw |
⊢ 𝒫 𝑠 |
18 |
16
|
cv |
⊢ 𝑥 |
19 |
|
cdom |
⊢ ≼ |
20 |
|
com |
⊢ ω |
21 |
18 20 19
|
wbr |
⊢ 𝑥 ≼ ω |
22 |
|
vy |
⊢ 𝑦 |
23 |
22
|
cv |
⊢ 𝑦 |
24 |
22 18 23
|
wdisj |
⊢ Disj 𝑦 ∈ 𝑥 𝑦 |
25 |
21 24
|
wa |
⊢ ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) |
26 |
18
|
cuni |
⊢ ∪ 𝑥 |
27 |
26 6
|
cfv |
⊢ ( 𝑚 ‘ ∪ 𝑥 ) |
28 |
23 6
|
cfv |
⊢ ( 𝑚 ‘ 𝑦 ) |
29 |
18 28 22
|
cesum |
⊢ Σ* 𝑦 ∈ 𝑥 ( 𝑚 ‘ 𝑦 ) |
30 |
27 29
|
wceq |
⊢ ( 𝑚 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑚 ‘ 𝑦 ) |
31 |
25 30
|
wi |
⊢ ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑚 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑚 ‘ 𝑦 ) ) |
32 |
31 16 17
|
wral |
⊢ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑚 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑚 ‘ 𝑦 ) ) |
33 |
12 15 32
|
w3a |
⊢ ( 𝑚 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑚 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑚 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑚 ‘ 𝑦 ) ) ) |
34 |
33 5
|
cab |
⊢ { 𝑚 ∣ ( 𝑚 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑚 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑚 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑚 ‘ 𝑦 ) ) ) } |
35 |
1 4 34
|
cmpt |
⊢ ( 𝑠 ∈ ∪ ran sigAlgebra ↦ { 𝑚 ∣ ( 𝑚 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑚 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑚 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑚 ‘ 𝑦 ) ) ) } ) |
36 |
0 35
|
wceq |
⊢ measures = ( 𝑠 ∈ ∪ ran sigAlgebra ↦ { 𝑚 ∣ ( 𝑚 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑚 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑚 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑚 ‘ 𝑦 ) ) ) } ) |