Metamath Proof Explorer


Definition df-esum

Description: Define a short-hand for the possibly infinite sum over the extended nonnegative reals. sum* is relying on the properties of the tsums , developped by Mario Carneiro. (Contributed by Thierry Arnoux, 21-Sep-2016)

Ref Expression
Assertion df-esum * k A B = 𝑠 * 𝑠 0 +∞ tsums k A B

Detailed syntax breakdown

Step Hyp Ref Expression
0 vk setvar k
1 cA class A
2 cB class B
3 1 2 0 cesum class * k A B
4 cxrs class 𝑠 *
5 cress class 𝑠
6 cc0 class 0
7 cicc class .
8 cpnf class +∞
9 6 8 7 co class 0 +∞
10 4 9 5 co class 𝑠 * 𝑠 0 +∞
11 ctsu class tsums
12 0 1 2 cmpt class k A B
13 10 12 11 co class 𝑠 * 𝑠 0 +∞ tsums k A B
14 13 cuni class 𝑠 * 𝑠 0 +∞ tsums k A B
15 3 14 wceq wff * k A B = 𝑠 * 𝑠 0 +∞ tsums k A B