Metamath Proof Explorer


Definition df-xrs

Description: The extended real number structure. Unlike df-cnfld , the extended real numbers do not have good algebraic properties, so this is not actually a group or anything higher, even though it has just as many operations as df-cnfld . The main interest in this structure is in its ordering, which is complete and compact. The metric described here is an extension of the absolute value metric, but it is not itself a metric because +oo is infinitely far from all other points. The topology is based on the order and not the extended metric (which would make +oo an isolated point since there is nothing else in the 1 -ball around it). All components of this structure agree with CCfld when restricted to RR . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion df-xrs 𝑠*=Basendx*+ndx+𝑒ndx𝑒TopSetndxordTopndxdistndxx*,y*ifxyy+𝑒xx+𝑒y

Detailed syntax breakdown

Step Hyp Ref Expression
0 cxrs class𝑠*
1 cbs classBase
2 cnx classndx
3 2 1 cfv classBasendx
4 cxr class*
5 3 4 cop classBasendx*
6 cplusg class+𝑔
7 2 6 cfv class+ndx
8 cxad class+𝑒
9 7 8 cop class+ndx+𝑒
10 cmulr class𝑟
11 2 10 cfv classndx
12 cxmu class𝑒
13 11 12 cop classndx𝑒
14 5 9 13 ctp classBasendx*+ndx+𝑒ndx𝑒
15 cts classTopSet
16 2 15 cfv classTopSetndx
17 cordt classordTop
18 cle class
19 18 17 cfv classordTop
20 16 19 cop classTopSetndxordTop
21 cple classle
22 2 21 cfv classndx
23 22 18 cop classndx
24 cds classdist
25 2 24 cfv classdistndx
26 vx setvarx
27 vy setvary
28 26 cv setvarx
29 27 cv setvary
30 28 29 18 wbr wffxy
31 28 cxne classx
32 29 31 8 co classy+𝑒x
33 29 cxne classy
34 28 33 8 co classx+𝑒y
35 30 32 34 cif classifxyy+𝑒xx+𝑒y
36 26 27 4 4 35 cmpo classx*,y*ifxyy+𝑒xx+𝑒y
37 25 36 cop classdistndxx*,y*ifxyy+𝑒xx+𝑒y
38 20 23 37 ctp classTopSetndxordTopndxdistndxx*,y*ifxyy+𝑒xx+𝑒y
39 14 38 cun classBasendx*+ndx+𝑒ndx𝑒TopSetndxordTopndxdistndxx*,y*ifxyy+𝑒xx+𝑒y
40 0 39 wceq wff𝑠*=Basendx*+ndx+𝑒ndx𝑒TopSetndxordTopndxdistndxx*,y*ifxyy+𝑒xx+𝑒y