Metamath Proof Explorer


Definition df-xmul

Description: Define multiplication over extended real numbers. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion df-xmul 𝑒=x*,y*ifx=0y=00if0<yx=+∞y<0x=−∞0<xy=+∞x<0y=−∞+∞if0<yx=−∞y<0x=+∞0<xy=−∞x<0y=+∞−∞xy

Detailed syntax breakdown

Step Hyp Ref Expression
0 cxmu class𝑒
1 vx setvarx
2 cxr class*
3 vy setvary
4 1 cv setvarx
5 cc0 class0
6 4 5 wceq wffx=0
7 3 cv setvary
8 7 5 wceq wffy=0
9 6 8 wo wffx=0y=0
10 clt class<
11 5 7 10 wbr wff0<y
12 cpnf class+∞
13 4 12 wceq wffx=+∞
14 11 13 wa wff0<yx=+∞
15 7 5 10 wbr wffy<0
16 cmnf class−∞
17 4 16 wceq wffx=−∞
18 15 17 wa wffy<0x=−∞
19 14 18 wo wff0<yx=+∞y<0x=−∞
20 5 4 10 wbr wff0<x
21 7 12 wceq wffy=+∞
22 20 21 wa wff0<xy=+∞
23 4 5 10 wbr wffx<0
24 7 16 wceq wffy=−∞
25 23 24 wa wffx<0y=−∞
26 22 25 wo wff0<xy=+∞x<0y=−∞
27 19 26 wo wff0<yx=+∞y<0x=−∞0<xy=+∞x<0y=−∞
28 11 17 wa wff0<yx=−∞
29 15 13 wa wffy<0x=+∞
30 28 29 wo wff0<yx=−∞y<0x=+∞
31 20 24 wa wff0<xy=−∞
32 23 21 wa wffx<0y=+∞
33 31 32 wo wff0<xy=−∞x<0y=+∞
34 30 33 wo wff0<yx=−∞y<0x=+∞0<xy=−∞x<0y=+∞
35 cmul class×
36 4 7 35 co classxy
37 34 16 36 cif classif0<yx=−∞y<0x=+∞0<xy=−∞x<0y=+∞−∞xy
38 27 12 37 cif classif0<yx=+∞y<0x=−∞0<xy=+∞x<0y=−∞+∞if0<yx=−∞y<0x=+∞0<xy=−∞x<0y=+∞−∞xy
39 9 5 38 cif classifx=0y=00if0<yx=+∞y<0x=−∞0<xy=+∞x<0y=−∞+∞if0<yx=−∞y<0x=+∞0<xy=−∞x<0y=+∞−∞xy
40 1 3 2 2 39 cmpo classx*,y*ifx=0y=00if0<yx=+∞y<0x=−∞0<xy=+∞x<0y=−∞+∞if0<yx=−∞y<0x=+∞0<xy=−∞x<0y=+∞−∞xy
41 0 40 wceq wff𝑒=x*,y*ifx=0y=00if0<yx=+∞y<0x=−∞0<xy=+∞x<0y=−∞+∞if0<yx=−∞y<0x=+∞0<xy=−∞x<0y=+∞−∞xy