Metamath Proof Explorer
Description: Define the negative of an extended real number. (Contributed by FL, 26-Dec-2011)
|
|
Ref |
Expression |
|
Assertion |
df-xneg |
|
Detailed syntax breakdown
| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cA |
|
| 1 |
0
|
cxne |
|
| 2 |
|
cpnf |
|
| 3 |
0 2
|
wceq |
|
| 4 |
|
cmnf |
|
| 5 |
0 4
|
wceq |
|
| 6 |
0
|
cneg |
|
| 7 |
5 2 6
|
cif |
|
| 8 |
3 4 7
|
cif |
|
| 9 |
1 8
|
wceq |
|