Metamath Proof Explorer


Definition df-xneg

Description: Define the negative of an extended real number. (Contributed by FL, 26-Dec-2011)

Ref Expression
Assertion df-xneg A=ifA=+∞−∞ifA=−∞+∞A

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA classA
1 0 cxne classA
2 cpnf class+∞
3 0 2 wceq wffA=+∞
4 cmnf class−∞
5 0 4 wceq wffA=−∞
6 0 cneg classA
7 5 2 6 cif classifA=−∞+∞A
8 3 4 7 cif classifA=+∞−∞ifA=−∞+∞A
9 1 8 wceq wffA=ifA=+∞−∞ifA=−∞+∞A