Metamath Proof Explorer


Definition df-tsms

Description: Define the set of limit points of an infinite group sum for the topological group G . If G is Hausdorff, then there will be at most one element in this set and U. ( W tsums F ) selects this unique element if it exists. ( W tsums F ) ~1o is a way to say that the sum exists and is unique. Note that unlike sum_ ( df-sum ) and gsum ( df-gsum ), this does not return the sum itself, but rather the set of all such sums, which is usually either empty or a singleton. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Assertion df-tsms tsums=wV,fV𝒫domfFin/sTopOpenwfLimfsfilGenranzsys|zyyswfy

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctsu classtsums
1 vw setvarw
2 cvv classV
3 vf setvarf
4 3 cv setvarf
5 4 cdm classdomf
6 5 cpw class𝒫domf
7 cfn classFin
8 6 7 cin class𝒫domfFin
9 vs setvars
10 ctopn classTopOpen
11 1 cv setvarw
12 11 10 cfv classTopOpenw
13 cflf classfLimf
14 9 cv setvars
15 cfg classfilGen
16 vz setvarz
17 vy setvary
18 16 cv setvarz
19 17 cv setvary
20 18 19 wss wffzy
21 20 17 14 crab classys|zy
22 16 14 21 cmpt classzsys|zy
23 22 crn classranzsys|zy
24 14 23 15 co classsfilGenranzsys|zy
25 12 24 13 co classTopOpenwfLimfsfilGenranzsys|zy
26 cgsu classΣ𝑔
27 4 19 cres classfy
28 11 27 26 co classwfy
29 17 14 28 cmpt classyswfy
30 29 25 cfv classTopOpenwfLimfsfilGenranzsys|zyyswfy
31 9 8 30 csb class𝒫domfFin/sTopOpenwfLimfsfilGenranzsys|zyyswfy
32 1 3 2 2 31 cmpo classwV,fV𝒫domfFin/sTopOpenwfLimfsfilGenranzsys|zyyswfy
33 0 32 wceq wfftsums=wV,fV𝒫domfFin/sTopOpenwfLimfsfilGenranzsys|zyyswfy