| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ctsu |
|- tsums |
| 1 |
|
vw |
|- w |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vf |
|- f |
| 4 |
3
|
cv |
|- f |
| 5 |
4
|
cdm |
|- dom f |
| 6 |
5
|
cpw |
|- ~P dom f |
| 7 |
|
cfn |
|- Fin |
| 8 |
6 7
|
cin |
|- ( ~P dom f i^i Fin ) |
| 9 |
|
vs |
|- s |
| 10 |
|
ctopn |
|- TopOpen |
| 11 |
1
|
cv |
|- w |
| 12 |
11 10
|
cfv |
|- ( TopOpen ` w ) |
| 13 |
|
cflf |
|- fLimf |
| 14 |
9
|
cv |
|- s |
| 15 |
|
cfg |
|- filGen |
| 16 |
|
vz |
|- z |
| 17 |
|
vy |
|- y |
| 18 |
16
|
cv |
|- z |
| 19 |
17
|
cv |
|- y |
| 20 |
18 19
|
wss |
|- z C_ y |
| 21 |
20 17 14
|
crab |
|- { y e. s | z C_ y } |
| 22 |
16 14 21
|
cmpt |
|- ( z e. s |-> { y e. s | z C_ y } ) |
| 23 |
22
|
crn |
|- ran ( z e. s |-> { y e. s | z C_ y } ) |
| 24 |
14 23 15
|
co |
|- ( s filGen ran ( z e. s |-> { y e. s | z C_ y } ) ) |
| 25 |
12 24 13
|
co |
|- ( ( TopOpen ` w ) fLimf ( s filGen ran ( z e. s |-> { y e. s | z C_ y } ) ) ) |
| 26 |
|
cgsu |
|- gsum |
| 27 |
4 19
|
cres |
|- ( f |` y ) |
| 28 |
11 27 26
|
co |
|- ( w gsum ( f |` y ) ) |
| 29 |
17 14 28
|
cmpt |
|- ( y e. s |-> ( w gsum ( f |` y ) ) ) |
| 30 |
29 25
|
cfv |
|- ( ( ( TopOpen ` w ) fLimf ( s filGen ran ( z e. s |-> { y e. s | z C_ y } ) ) ) ` ( y e. s |-> ( w gsum ( f |` y ) ) ) ) |
| 31 |
9 8 30
|
csb |
|- [_ ( ~P dom f i^i Fin ) / s ]_ ( ( ( TopOpen ` w ) fLimf ( s filGen ran ( z e. s |-> { y e. s | z C_ y } ) ) ) ` ( y e. s |-> ( w gsum ( f |` y ) ) ) ) |
| 32 |
1 3 2 2 31
|
cmpo |
|- ( w e. _V , f e. _V |-> [_ ( ~P dom f i^i Fin ) / s ]_ ( ( ( TopOpen ` w ) fLimf ( s filGen ran ( z e. s |-> { y e. s | z C_ y } ) ) ) ` ( y e. s |-> ( w gsum ( f |` y ) ) ) ) ) |
| 33 |
0 32
|
wceq |
|- tsums = ( w e. _V , f e. _V |-> [_ ( ~P dom f i^i Fin ) / s ]_ ( ( ( TopOpen ` w ) fLimf ( s filGen ran ( z e. s |-> { y e. s | z C_ y } ) ) ) ` ( y e. s |-> ( w gsum ( f |` y ) ) ) ) ) |