Metamath Proof Explorer


Definition df-esum

Description: Define a short-hand for the possibly infinite sum over the extended nonnegative reals. sum* is relying on the properties of the tsums , developped by Mario Carneiro. (Contributed by Thierry Arnoux, 21-Sep-2016)

Ref Expression
Assertion df-esum Σ* 𝑘𝐴 𝐵 = ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) tsums ( 𝑘𝐴𝐵 ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 vk 𝑘
1 cA 𝐴
2 cB 𝐵
3 1 2 0 cesum Σ* 𝑘𝐴 𝐵
4 cxrs *𝑠
5 cress s
6 cc0 0
7 cicc [,]
8 cpnf +∞
9 6 8 7 co ( 0 [,] +∞ )
10 4 9 5 co ( ℝ*𝑠s ( 0 [,] +∞ ) )
11 ctsu tsums
12 0 1 2 cmpt ( 𝑘𝐴𝐵 )
13 10 12 11 co ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) tsums ( 𝑘𝐴𝐵 ) )
14 13 cuni ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) tsums ( 𝑘𝐴𝐵 ) )
15 3 14 wceq Σ* 𝑘𝐴 𝐵 = ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) tsums ( 𝑘𝐴𝐵 ) )