Metamath Proof Explorer


Theorem esumex

Description: An extended sum is a set by definition. (Contributed by Thierry Arnoux, 5-Sep-2017)

Ref Expression
Assertion esumex Σ* 𝑘𝐴 𝐵 ∈ V

Proof

Step Hyp Ref Expression
1 df-esum Σ* 𝑘𝐴 𝐵 = ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) tsums ( 𝑘𝐴𝐵 ) )
2 ovex ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) tsums ( 𝑘𝐴𝐵 ) ) ∈ V
3 2 uniex ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) tsums ( 𝑘𝐴𝐵 ) ) ∈ V
4 1 3 eqeltri Σ* 𝑘𝐴 𝐵 ∈ V