Description: An extended sum is a set by definition. (Contributed by Thierry Arnoux, 5-Sep-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | esumex | ⊢ Σ* 𝑘 ∈ 𝐴 𝐵 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-esum | ⊢ Σ* 𝑘 ∈ 𝐴 𝐵 = ∪ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) | |
2 | ovex | ⊢ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) ∈ V | |
3 | 2 | uniex | ⊢ ∪ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) ∈ V |
4 | 1 3 | eqeltri | ⊢ Σ* 𝑘 ∈ 𝐴 𝐵 ∈ V |