Description: An extended sum is a set by definition. (Contributed by Thierry Arnoux, 5-Sep-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | esumex | |- sum* k e. A B e. _V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-esum | |- sum* k e. A B = U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) ) |
|
2 | ovex | |- ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) ) e. _V |
|
3 | 2 | uniex | |- U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) ) e. _V |
4 | 1 3 | eqeltri | |- sum* k e. A B e. _V |