Metamath Proof Explorer


Theorem esumex

Description: An extended sum is a set by definition. (Contributed by Thierry Arnoux, 5-Sep-2017)

Ref Expression
Assertion esumex
|- sum* k e. A B e. _V

Proof

Step Hyp Ref Expression
1 df-esum
 |-  sum* k e. A B = U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) )
2 ovex
 |-  ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) ) e. _V
3 2 uniex
 |-  U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) ) e. _V
4 1 3 eqeltri
 |-  sum* k e. A B e. _V