| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esumcl.1 |
|- F/_ k A |
| 2 |
|
xrge0base |
|- ( 0 [,] +oo ) = ( Base ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
| 3 |
|
xrge0cmn |
|- ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd |
| 4 |
3
|
a1i |
|- ( ( A e. V /\ A. k e. A B e. ( 0 [,] +oo ) ) -> ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd ) |
| 5 |
|
xrge0tps |
|- ( RR*s |`s ( 0 [,] +oo ) ) e. TopSp |
| 6 |
5
|
a1i |
|- ( ( A e. V /\ A. k e. A B e. ( 0 [,] +oo ) ) -> ( RR*s |`s ( 0 [,] +oo ) ) e. TopSp ) |
| 7 |
|
simpl |
|- ( ( A e. V /\ A. k e. A B e. ( 0 [,] +oo ) ) -> A e. V ) |
| 8 |
1
|
nfel1 |
|- F/ k A e. V |
| 9 |
|
nfra1 |
|- F/ k A. k e. A B e. ( 0 [,] +oo ) |
| 10 |
8 9
|
nfan |
|- F/ k ( A e. V /\ A. k e. A B e. ( 0 [,] +oo ) ) |
| 11 |
|
nfcv |
|- F/_ k ( 0 [,] +oo ) |
| 12 |
|
simpr |
|- ( ( A e. V /\ A. k e. A B e. ( 0 [,] +oo ) ) -> A. k e. A B e. ( 0 [,] +oo ) ) |
| 13 |
12
|
r19.21bi |
|- ( ( ( A e. V /\ A. k e. A B e. ( 0 [,] +oo ) ) /\ k e. A ) -> B e. ( 0 [,] +oo ) ) |
| 14 |
|
eqid |
|- ( k e. A |-> B ) = ( k e. A |-> B ) |
| 15 |
10 1 11 13 14
|
fmptdF |
|- ( ( A e. V /\ A. k e. A B e. ( 0 [,] +oo ) ) -> ( k e. A |-> B ) : A --> ( 0 [,] +oo ) ) |
| 16 |
2 4 6 7 15
|
tsmscl |
|- ( ( A e. V /\ A. k e. A B e. ( 0 [,] +oo ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) ) C_ ( 0 [,] +oo ) ) |
| 17 |
|
df-esum |
|- sum* k e. A B = U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) ) |
| 18 |
|
eqid |
|- ( RR*s |`s ( 0 [,] +oo ) ) = ( RR*s |`s ( 0 [,] +oo ) ) |
| 19 |
18 7 15
|
xrge0tsmsbi |
|- ( ( A e. V /\ A. k e. A B e. ( 0 [,] +oo ) ) -> ( sum* k e. A B e. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) ) <-> sum* k e. A B = U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) ) ) ) |
| 20 |
17 19
|
mpbiri |
|- ( ( A e. V /\ A. k e. A B e. ( 0 [,] +oo ) ) -> sum* k e. A B e. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) ) ) |
| 21 |
16 20
|
sseldd |
|- ( ( A e. V /\ A. k e. A B e. ( 0 [,] +oo ) ) -> sum* k e. A B e. ( 0 [,] +oo ) ) |