Metamath Proof Explorer


Theorem esumcl

Description: Closure for extended sum in the extended positive reals. (Contributed by Thierry Arnoux, 2-Jan-2017)

Ref Expression
Hypothesis esumcl.1
|- F/_ k A
Assertion esumcl
|- ( ( A e. V /\ A. k e. A B e. ( 0 [,] +oo ) ) -> sum* k e. A B e. ( 0 [,] +oo ) )

Proof

Step Hyp Ref Expression
1 esumcl.1
 |-  F/_ k A
2 xrge0base
 |-  ( 0 [,] +oo ) = ( Base ` ( RR*s |`s ( 0 [,] +oo ) ) )
3 xrge0cmn
 |-  ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd
4 3 a1i
 |-  ( ( A e. V /\ A. k e. A B e. ( 0 [,] +oo ) ) -> ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd )
5 xrge0tps
 |-  ( RR*s |`s ( 0 [,] +oo ) ) e. TopSp
6 5 a1i
 |-  ( ( A e. V /\ A. k e. A B e. ( 0 [,] +oo ) ) -> ( RR*s |`s ( 0 [,] +oo ) ) e. TopSp )
7 simpl
 |-  ( ( A e. V /\ A. k e. A B e. ( 0 [,] +oo ) ) -> A e. V )
8 1 nfel1
 |-  F/ k A e. V
9 nfra1
 |-  F/ k A. k e. A B e. ( 0 [,] +oo )
10 8 9 nfan
 |-  F/ k ( A e. V /\ A. k e. A B e. ( 0 [,] +oo ) )
11 nfcv
 |-  F/_ k ( 0 [,] +oo )
12 simpr
 |-  ( ( A e. V /\ A. k e. A B e. ( 0 [,] +oo ) ) -> A. k e. A B e. ( 0 [,] +oo ) )
13 12 r19.21bi
 |-  ( ( ( A e. V /\ A. k e. A B e. ( 0 [,] +oo ) ) /\ k e. A ) -> B e. ( 0 [,] +oo ) )
14 eqid
 |-  ( k e. A |-> B ) = ( k e. A |-> B )
15 10 1 11 13 14 fmptdF
 |-  ( ( A e. V /\ A. k e. A B e. ( 0 [,] +oo ) ) -> ( k e. A |-> B ) : A --> ( 0 [,] +oo ) )
16 2 4 6 7 15 tsmscl
 |-  ( ( A e. V /\ A. k e. A B e. ( 0 [,] +oo ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) ) C_ ( 0 [,] +oo ) )
17 df-esum
 |-  sum* k e. A B = U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) )
18 eqid
 |-  ( RR*s |`s ( 0 [,] +oo ) ) = ( RR*s |`s ( 0 [,] +oo ) )
19 18 7 15 xrge0tsmsbi
 |-  ( ( A e. V /\ A. k e. A B e. ( 0 [,] +oo ) ) -> ( sum* k e. A B e. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) ) <-> sum* k e. A B = U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) ) ) )
20 17 19 mpbiri
 |-  ( ( A e. V /\ A. k e. A B e. ( 0 [,] +oo ) ) -> sum* k e. A B e. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) ) )
21 16 20 sseldd
 |-  ( ( A e. V /\ A. k e. A B e. ( 0 [,] +oo ) ) -> sum* k e. A B e. ( 0 [,] +oo ) )