Metamath Proof Explorer


Theorem esumcl

Description: Closure for extended sum in the extended positive reals. (Contributed by Thierry Arnoux, 2-Jan-2017)

Ref Expression
Hypothesis esumcl.1 _kA
Assertion esumcl AVkAB0+∞*kAB0+∞

Proof

Step Hyp Ref Expression
1 esumcl.1 _kA
2 xrge0base 0+∞=Base𝑠*𝑠0+∞
3 xrge0cmn 𝑠*𝑠0+∞CMnd
4 3 a1i AVkAB0+∞𝑠*𝑠0+∞CMnd
5 xrge0tps 𝑠*𝑠0+∞TopSp
6 5 a1i AVkAB0+∞𝑠*𝑠0+∞TopSp
7 simpl AVkAB0+∞AV
8 1 nfel1 kAV
9 nfra1 kkAB0+∞
10 8 9 nfan kAVkAB0+∞
11 nfcv _k0+∞
12 simpr AVkAB0+∞kAB0+∞
13 12 r19.21bi AVkAB0+∞kAB0+∞
14 eqid kAB=kAB
15 10 1 11 13 14 fmptdF AVkAB0+∞kAB:A0+∞
16 2 4 6 7 15 tsmscl AVkAB0+∞𝑠*𝑠0+∞tsumskAB0+∞
17 df-esum *kAB=𝑠*𝑠0+∞tsumskAB
18 eqid 𝑠*𝑠0+∞=𝑠*𝑠0+∞
19 18 7 15 xrge0tsmsbi AVkAB0+∞*kAB𝑠*𝑠0+∞tsumskAB*kAB=𝑠*𝑠0+∞tsumskAB
20 17 19 mpbiri AVkAB0+∞*kAB𝑠*𝑠0+∞tsumskAB
21 16 20 sseldd AVkAB0+∞*kAB0+∞