Metamath Proof Explorer


Theorem esumcl

Description: Closure for extended sum in the extended positive reals. (Contributed by Thierry Arnoux, 2-Jan-2017)

Ref Expression
Hypothesis esumcl.1 _ k A
Assertion esumcl A V k A B 0 +∞ * k A B 0 +∞

Proof

Step Hyp Ref Expression
1 esumcl.1 _ k A
2 xrge0base 0 +∞ = Base 𝑠 * 𝑠 0 +∞
3 xrge0cmn 𝑠 * 𝑠 0 +∞ CMnd
4 3 a1i A V k A B 0 +∞ 𝑠 * 𝑠 0 +∞ CMnd
5 xrge0tps 𝑠 * 𝑠 0 +∞ TopSp
6 5 a1i A V k A B 0 +∞ 𝑠 * 𝑠 0 +∞ TopSp
7 simpl A V k A B 0 +∞ A V
8 1 nfel1 k A V
9 nfra1 k k A B 0 +∞
10 8 9 nfan k A V k A B 0 +∞
11 nfcv _ k 0 +∞
12 simpr A V k A B 0 +∞ k A B 0 +∞
13 12 r19.21bi A V k A B 0 +∞ k A B 0 +∞
14 eqid k A B = k A B
15 10 1 11 13 14 fmptdF A V k A B 0 +∞ k A B : A 0 +∞
16 2 4 6 7 15 tsmscl A V k A B 0 +∞ 𝑠 * 𝑠 0 +∞ tsums k A B 0 +∞
17 df-esum * k A B = 𝑠 * 𝑠 0 +∞ tsums k A B
18 eqid 𝑠 * 𝑠 0 +∞ = 𝑠 * 𝑠 0 +∞
19 18 7 15 xrge0tsmsbi A V k A B 0 +∞ * k A B 𝑠 * 𝑠 0 +∞ tsums k A B * k A B = 𝑠 * 𝑠 0 +∞ tsums k A B
20 17 19 mpbiri A V k A B 0 +∞ * k A B 𝑠 * 𝑠 0 +∞ tsums k A B
21 16 20 sseldd A V k A B 0 +∞ * k A B 0 +∞