Metamath Proof Explorer


Theorem xrge0tsmsbi

Description: Any limit of a finite or infinite sum in the nonnegative extended reals is the union of the sets limits, since this set is a singleton. (Contributed by Thierry Arnoux, 23-Jun-2017)

Ref Expression
Hypotheses xrge0tsmseq.g G = 𝑠 * 𝑠 0 +∞
xrge0tsmseq.a φ A V
xrge0tsmseq.f φ F : A 0 +∞
Assertion xrge0tsmsbi φ C G tsums F C = G tsums F

Proof

Step Hyp Ref Expression
1 xrge0tsmseq.g G = 𝑠 * 𝑠 0 +∞
2 xrge0tsmseq.a φ A V
3 xrge0tsmseq.f φ F : A 0 +∞
4 1 xrge0tsms2 A V F : A 0 +∞ G tsums F 1 𝑜
5 2 3 4 syl2anc φ G tsums F 1 𝑜
6 en1b G tsums F 1 𝑜 G tsums F = G tsums F
7 5 6 sylib φ G tsums F = G tsums F
8 7 eleq2d φ C G tsums F C G tsums F
9 ovex G tsums F V
10 9 uniex G tsums F V
11 eleq1 C = G tsums F C V G tsums F V
12 10 11 mpbiri C = G tsums F C V
13 elsng C V C G tsums F C = G tsums F
14 12 13 syl C = G tsums F C G tsums F C = G tsums F
15 14 ibir C = G tsums F C G tsums F
16 elsni C G tsums F C = G tsums F
17 15 16 impbii C = G tsums F C G tsums F
18 8 17 bitr4di φ C G tsums F C = G tsums F