| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrge0tsmseq.g |
⊢ 𝐺 = ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) |
| 2 |
|
xrge0tsmseq.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 3 |
|
xrge0tsmseq.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ( 0 [,] +∞ ) ) |
| 4 |
1
|
xrge0tsms2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ( 0 [,] +∞ ) ) → ( 𝐺 tsums 𝐹 ) ≈ 1o ) |
| 5 |
2 3 4
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) ≈ 1o ) |
| 6 |
|
en1b |
⊢ ( ( 𝐺 tsums 𝐹 ) ≈ 1o ↔ ( 𝐺 tsums 𝐹 ) = { ∪ ( 𝐺 tsums 𝐹 ) } ) |
| 7 |
5 6
|
sylib |
⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) = { ∪ ( 𝐺 tsums 𝐹 ) } ) |
| 8 |
7
|
eleq2d |
⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐺 tsums 𝐹 ) ↔ 𝐶 ∈ { ∪ ( 𝐺 tsums 𝐹 ) } ) ) |
| 9 |
|
ovex |
⊢ ( 𝐺 tsums 𝐹 ) ∈ V |
| 10 |
9
|
uniex |
⊢ ∪ ( 𝐺 tsums 𝐹 ) ∈ V |
| 11 |
|
eleq1 |
⊢ ( 𝐶 = ∪ ( 𝐺 tsums 𝐹 ) → ( 𝐶 ∈ V ↔ ∪ ( 𝐺 tsums 𝐹 ) ∈ V ) ) |
| 12 |
10 11
|
mpbiri |
⊢ ( 𝐶 = ∪ ( 𝐺 tsums 𝐹 ) → 𝐶 ∈ V ) |
| 13 |
|
elsng |
⊢ ( 𝐶 ∈ V → ( 𝐶 ∈ { ∪ ( 𝐺 tsums 𝐹 ) } ↔ 𝐶 = ∪ ( 𝐺 tsums 𝐹 ) ) ) |
| 14 |
12 13
|
syl |
⊢ ( 𝐶 = ∪ ( 𝐺 tsums 𝐹 ) → ( 𝐶 ∈ { ∪ ( 𝐺 tsums 𝐹 ) } ↔ 𝐶 = ∪ ( 𝐺 tsums 𝐹 ) ) ) |
| 15 |
14
|
ibir |
⊢ ( 𝐶 = ∪ ( 𝐺 tsums 𝐹 ) → 𝐶 ∈ { ∪ ( 𝐺 tsums 𝐹 ) } ) |
| 16 |
|
elsni |
⊢ ( 𝐶 ∈ { ∪ ( 𝐺 tsums 𝐹 ) } → 𝐶 = ∪ ( 𝐺 tsums 𝐹 ) ) |
| 17 |
15 16
|
impbii |
⊢ ( 𝐶 = ∪ ( 𝐺 tsums 𝐹 ) ↔ 𝐶 ∈ { ∪ ( 𝐺 tsums 𝐹 ) } ) |
| 18 |
8 17
|
bitr4di |
⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐺 tsums 𝐹 ) ↔ 𝐶 = ∪ ( 𝐺 tsums 𝐹 ) ) ) |