| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrge0tsms2.g |
⊢ 𝐺 = ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) |
| 2 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ( 0 [,] +∞ ) ) → 𝐴 ∈ 𝑉 ) |
| 3 |
|
simpr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ( 0 [,] +∞ ) ) → 𝐹 : 𝐴 ⟶ ( 0 [,] +∞ ) ) |
| 4 |
|
eqid |
⊢ sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) |
| 5 |
1 2 3 4
|
xrge0tsms |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ( 0 [,] +∞ ) ) → ( 𝐺 tsums 𝐹 ) = { sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) } ) |
| 6 |
|
xrltso |
⊢ < Or ℝ* |
| 7 |
6
|
supex |
⊢ sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) ∈ V |
| 8 |
7
|
ensn1 |
⊢ { sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) } ≈ 1o |
| 9 |
5 8
|
eqbrtrdi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ( 0 [,] +∞ ) ) → ( 𝐺 tsums 𝐹 ) ≈ 1o ) |