Metamath Proof Explorer


Theorem xrge0tsms2

Description: Any finite or infinite sum in the nonnegative extended reals is convergent. This is a rather unique property of the set [ 0 , +oo ] ; a similar theorem is not true for RR* or RR or [ 0 , +oo ) . It is true for NN0 u. { +oo } , however, or more generally any additive submonoid of [ 0 , +oo ) with +oo adjoined. (Contributed by Mario Carneiro, 13-Sep-2015)

Ref Expression
Hypothesis xrge0tsms2.g 𝐺 = ( ℝ*𝑠s ( 0 [,] +∞ ) )
Assertion xrge0tsms2 ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ ( 0 [,] +∞ ) ) → ( 𝐺 tsums 𝐹 ) ≈ 1o )

Proof

Step Hyp Ref Expression
1 xrge0tsms2.g 𝐺 = ( ℝ*𝑠s ( 0 [,] +∞ ) )
2 simpl ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ ( 0 [,] +∞ ) ) → 𝐴𝑉 )
3 simpr ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ ( 0 [,] +∞ ) ) → 𝐹 : 𝐴 ⟶ ( 0 [,] +∞ ) )
4 eqid sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹𝑥 ) ) ) , ℝ* , < ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹𝑥 ) ) ) , ℝ* , < )
5 1 2 3 4 xrge0tsms ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ ( 0 [,] +∞ ) ) → ( 𝐺 tsums 𝐹 ) = { sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹𝑥 ) ) ) , ℝ* , < ) } )
6 xrltso < Or ℝ*
7 6 supex sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹𝑥 ) ) ) , ℝ* , < ) ∈ V
8 7 ensn1 { sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹𝑥 ) ) ) , ℝ* , < ) } ≈ 1o
9 5 8 eqbrtrdi ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ ( 0 [,] +∞ ) ) → ( 𝐺 tsums 𝐹 ) ≈ 1o )