Step |
Hyp |
Ref |
Expression |
1 |
|
xmetdcn2.1 |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
2 |
|
xmetdcn2.2 |
⊢ 𝐶 = ( dist ‘ ℝ*𝑠 ) |
3 |
|
xmetdcn2.3 |
⊢ 𝐾 = ( MetOpen ‘ 𝐶 ) |
4 |
|
metdcn.d |
⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
5 |
|
metdcn.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
6 |
|
metdcn.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑋 ) |
7 |
|
metdcn.r |
⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) |
8 |
|
metdcn.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑋 ) |
9 |
|
metdcn.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑋 ) |
10 |
|
metdcn.4 |
⊢ ( 𝜑 → ( 𝐴 𝐷 𝑌 ) < ( 𝑅 / 2 ) ) |
11 |
|
metdcn.5 |
⊢ ( 𝜑 → ( 𝐵 𝐷 𝑍 ) < ( 𝑅 / 2 ) ) |
12 |
2
|
xrsxmet |
⊢ 𝐶 ∈ ( ∞Met ‘ ℝ* ) |
13 |
12
|
a1i |
⊢ ( 𝜑 → 𝐶 ∈ ( ∞Met ‘ ℝ* ) ) |
14 |
|
xmetcl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) ∈ ℝ* ) |
15 |
4 5 6 14
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 𝐷 𝐵 ) ∈ ℝ* ) |
16 |
|
xmetcl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ) → ( 𝑌 𝐷 𝑍 ) ∈ ℝ* ) |
17 |
4 8 9 16
|
syl3anc |
⊢ ( 𝜑 → ( 𝑌 𝐷 𝑍 ) ∈ ℝ* ) |
18 |
|
xmetcl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑌 𝐷 𝐵 ) ∈ ℝ* ) |
19 |
4 8 6 18
|
syl3anc |
⊢ ( 𝜑 → ( 𝑌 𝐷 𝐵 ) ∈ ℝ* ) |
20 |
7
|
rphalfcld |
⊢ ( 𝜑 → ( 𝑅 / 2 ) ∈ ℝ+ ) |
21 |
20
|
rpred |
⊢ ( 𝜑 → ( 𝑅 / 2 ) ∈ ℝ ) |
22 |
|
xmetcl |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ ℝ* ) ∧ ( 𝐴 𝐷 𝐵 ) ∈ ℝ* ∧ ( 𝑌 𝐷 𝐵 ) ∈ ℝ* ) → ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝐵 ) ) ∈ ℝ* ) |
23 |
13 15 19 22
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝐵 ) ) ∈ ℝ* ) |
24 |
20
|
rpxrd |
⊢ ( 𝜑 → ( 𝑅 / 2 ) ∈ ℝ* ) |
25 |
|
xmetcl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝑌 ∈ 𝑋 ) → ( 𝐴 𝐷 𝑌 ) ∈ ℝ* ) |
26 |
4 5 8 25
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 𝐷 𝑌 ) ∈ ℝ* ) |
27 |
2
|
xmetrtri2 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑌 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝐵 ) ) ≤ ( 𝐴 𝐷 𝑌 ) ) |
28 |
4 5 8 6 27
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝐵 ) ) ≤ ( 𝐴 𝐷 𝑌 ) ) |
29 |
23 26 24 28 10
|
xrlelttrd |
⊢ ( 𝜑 → ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝐵 ) ) < ( 𝑅 / 2 ) ) |
30 |
23 24 29
|
xrltled |
⊢ ( 𝜑 → ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝐵 ) ) ≤ ( 𝑅 / 2 ) ) |
31 |
|
xmetlecl |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ ℝ* ) ∧ ( ( 𝐴 𝐷 𝐵 ) ∈ ℝ* ∧ ( 𝑌 𝐷 𝐵 ) ∈ ℝ* ) ∧ ( ( 𝑅 / 2 ) ∈ ℝ ∧ ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝐵 ) ) ≤ ( 𝑅 / 2 ) ) ) → ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝐵 ) ) ∈ ℝ ) |
32 |
13 15 19 21 30 31
|
syl122anc |
⊢ ( 𝜑 → ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝐵 ) ) ∈ ℝ ) |
33 |
|
xmetcl |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ ℝ* ) ∧ ( 𝑌 𝐷 𝐵 ) ∈ ℝ* ∧ ( 𝑌 𝐷 𝑍 ) ∈ ℝ* ) → ( ( 𝑌 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) ∈ ℝ* ) |
34 |
13 19 17 33
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑌 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) ∈ ℝ* ) |
35 |
|
xmetcl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ) → ( 𝐵 𝐷 𝑍 ) ∈ ℝ* ) |
36 |
4 6 9 35
|
syl3anc |
⊢ ( 𝜑 → ( 𝐵 𝐷 𝑍 ) ∈ ℝ* ) |
37 |
|
xmetsym |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑌 𝐷 𝐵 ) = ( 𝐵 𝐷 𝑌 ) ) |
38 |
4 8 6 37
|
syl3anc |
⊢ ( 𝜑 → ( 𝑌 𝐷 𝐵 ) = ( 𝐵 𝐷 𝑌 ) ) |
39 |
|
xmetsym |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ) → ( 𝑌 𝐷 𝑍 ) = ( 𝑍 𝐷 𝑌 ) ) |
40 |
4 8 9 39
|
syl3anc |
⊢ ( 𝜑 → ( 𝑌 𝐷 𝑍 ) = ( 𝑍 𝐷 𝑌 ) ) |
41 |
38 40
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝑌 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) = ( ( 𝐵 𝐷 𝑌 ) 𝐶 ( 𝑍 𝐷 𝑌 ) ) ) |
42 |
2
|
xmetrtri2 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ∧ 𝑌 ∈ 𝑋 ) ) → ( ( 𝐵 𝐷 𝑌 ) 𝐶 ( 𝑍 𝐷 𝑌 ) ) ≤ ( 𝐵 𝐷 𝑍 ) ) |
43 |
4 6 9 8 42
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝐵 𝐷 𝑌 ) 𝐶 ( 𝑍 𝐷 𝑌 ) ) ≤ ( 𝐵 𝐷 𝑍 ) ) |
44 |
41 43
|
eqbrtrd |
⊢ ( 𝜑 → ( ( 𝑌 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) ≤ ( 𝐵 𝐷 𝑍 ) ) |
45 |
34 36 24 44 11
|
xrlelttrd |
⊢ ( 𝜑 → ( ( 𝑌 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) < ( 𝑅 / 2 ) ) |
46 |
34 24 45
|
xrltled |
⊢ ( 𝜑 → ( ( 𝑌 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) ≤ ( 𝑅 / 2 ) ) |
47 |
|
xmetlecl |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ ℝ* ) ∧ ( ( 𝑌 𝐷 𝐵 ) ∈ ℝ* ∧ ( 𝑌 𝐷 𝑍 ) ∈ ℝ* ) ∧ ( ( 𝑅 / 2 ) ∈ ℝ ∧ ( ( 𝑌 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) ≤ ( 𝑅 / 2 ) ) ) → ( ( 𝑌 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) ∈ ℝ ) |
48 |
13 19 17 21 46 47
|
syl122anc |
⊢ ( 𝜑 → ( ( 𝑌 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) ∈ ℝ ) |
49 |
32 48
|
readdcld |
⊢ ( 𝜑 → ( ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝐵 ) ) + ( ( 𝑌 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) ) ∈ ℝ ) |
50 |
|
xmettri |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ ℝ* ) ∧ ( ( 𝐴 𝐷 𝐵 ) ∈ ℝ* ∧ ( 𝑌 𝐷 𝑍 ) ∈ ℝ* ∧ ( 𝑌 𝐷 𝐵 ) ∈ ℝ* ) ) → ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) ≤ ( ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝐵 ) ) +𝑒 ( ( 𝑌 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) ) ) |
51 |
13 15 17 19 50
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) ≤ ( ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝐵 ) ) +𝑒 ( ( 𝑌 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) ) ) |
52 |
32 48
|
rexaddd |
⊢ ( 𝜑 → ( ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝐵 ) ) +𝑒 ( ( 𝑌 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) ) = ( ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝐵 ) ) + ( ( 𝑌 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) ) ) |
53 |
51 52
|
breqtrd |
⊢ ( 𝜑 → ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) ≤ ( ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝐵 ) ) + ( ( 𝑌 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) ) ) |
54 |
|
xmetlecl |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ ℝ* ) ∧ ( ( 𝐴 𝐷 𝐵 ) ∈ ℝ* ∧ ( 𝑌 𝐷 𝑍 ) ∈ ℝ* ) ∧ ( ( ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝐵 ) ) + ( ( 𝑌 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) ) ∈ ℝ ∧ ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) ≤ ( ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝐵 ) ) + ( ( 𝑌 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) ) ) ) → ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) ∈ ℝ ) |
55 |
13 15 17 49 53 54
|
syl122anc |
⊢ ( 𝜑 → ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) ∈ ℝ ) |
56 |
7
|
rpred |
⊢ ( 𝜑 → 𝑅 ∈ ℝ ) |
57 |
32 48 56 29 45
|
lt2halvesd |
⊢ ( 𝜑 → ( ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝐵 ) ) + ( ( 𝑌 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) ) < 𝑅 ) |
58 |
55 49 56 53 57
|
lelttrd |
⊢ ( 𝜑 → ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) < 𝑅 ) |