Metamath Proof Explorer
Description: A sum is less than the whole if each term is less than half.
(Contributed by Mario Carneiro, 27-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
rehalfcld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
|
|
lt2halvesd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
|
|
lt2halvesd.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
|
|
lt2halvesd.4 |
⊢ ( 𝜑 → 𝐴 < ( 𝐶 / 2 ) ) |
|
|
lt2halvesd.5 |
⊢ ( 𝜑 → 𝐵 < ( 𝐶 / 2 ) ) |
|
Assertion |
lt2halvesd |
⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) < 𝐶 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
rehalfcld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
lt2halvesd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
lt2halvesd.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
4 |
|
lt2halvesd.4 |
⊢ ( 𝜑 → 𝐴 < ( 𝐶 / 2 ) ) |
5 |
|
lt2halvesd.5 |
⊢ ( 𝜑 → 𝐵 < ( 𝐶 / 2 ) ) |
6 |
|
lt2halves |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 < ( 𝐶 / 2 ) ∧ 𝐵 < ( 𝐶 / 2 ) ) → ( 𝐴 + 𝐵 ) < 𝐶 ) ) |
7 |
1 2 3 6
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐴 < ( 𝐶 / 2 ) ∧ 𝐵 < ( 𝐶 / 2 ) ) → ( 𝐴 + 𝐵 ) < 𝐶 ) ) |
8 |
4 5 7
|
mp2and |
⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) < 𝐶 ) |