Metamath Proof Explorer


Theorem lt2halvesd

Description: A sum is less than the whole if each term is less than half. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses rehalfcld.1
|- ( ph -> A e. RR )
lt2halvesd.2
|- ( ph -> B e. RR )
lt2halvesd.3
|- ( ph -> C e. RR )
lt2halvesd.4
|- ( ph -> A < ( C / 2 ) )
lt2halvesd.5
|- ( ph -> B < ( C / 2 ) )
Assertion lt2halvesd
|- ( ph -> ( A + B ) < C )

Proof

Step Hyp Ref Expression
1 rehalfcld.1
 |-  ( ph -> A e. RR )
2 lt2halvesd.2
 |-  ( ph -> B e. RR )
3 lt2halvesd.3
 |-  ( ph -> C e. RR )
4 lt2halvesd.4
 |-  ( ph -> A < ( C / 2 ) )
5 lt2halvesd.5
 |-  ( ph -> B < ( C / 2 ) )
6 lt2halves
 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A < ( C / 2 ) /\ B < ( C / 2 ) ) -> ( A + B ) < C ) )
7 1 2 3 6 syl3anc
 |-  ( ph -> ( ( A < ( C / 2 ) /\ B < ( C / 2 ) ) -> ( A + B ) < C ) )
8 4 5 7 mp2and
 |-  ( ph -> ( A + B ) < C )