Step |
Hyp |
Ref |
Expression |
1 |
|
3simpa |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A e. RR /\ B e. RR ) ) |
2 |
|
rehalfcl |
|- ( C e. RR -> ( C / 2 ) e. RR ) |
3 |
2 2
|
jca |
|- ( C e. RR -> ( ( C / 2 ) e. RR /\ ( C / 2 ) e. RR ) ) |
4 |
3
|
3ad2ant3 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( C / 2 ) e. RR /\ ( C / 2 ) e. RR ) ) |
5 |
|
lt2add |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( ( C / 2 ) e. RR /\ ( C / 2 ) e. RR ) ) -> ( ( A < ( C / 2 ) /\ B < ( C / 2 ) ) -> ( A + B ) < ( ( C / 2 ) + ( C / 2 ) ) ) ) |
6 |
1 4 5
|
syl2anc |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A < ( C / 2 ) /\ B < ( C / 2 ) ) -> ( A + B ) < ( ( C / 2 ) + ( C / 2 ) ) ) ) |
7 |
|
recn |
|- ( C e. RR -> C e. CC ) |
8 |
|
2halves |
|- ( C e. CC -> ( ( C / 2 ) + ( C / 2 ) ) = C ) |
9 |
7 8
|
syl |
|- ( C e. RR -> ( ( C / 2 ) + ( C / 2 ) ) = C ) |
10 |
9
|
breq2d |
|- ( C e. RR -> ( ( A + B ) < ( ( C / 2 ) + ( C / 2 ) ) <-> ( A + B ) < C ) ) |
11 |
10
|
3ad2ant3 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A + B ) < ( ( C / 2 ) + ( C / 2 ) ) <-> ( A + B ) < C ) ) |
12 |
6 11
|
sylibd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A < ( C / 2 ) /\ B < ( C / 2 ) ) -> ( A + B ) < C ) ) |