Step |
Hyp |
Ref |
Expression |
1 |
|
2times |
|- ( A e. CC -> ( 2 x. A ) = ( A + A ) ) |
2 |
1
|
oveq1d |
|- ( A e. CC -> ( ( 2 x. A ) / 2 ) = ( ( A + A ) / 2 ) ) |
3 |
|
2cn |
|- 2 e. CC |
4 |
|
2ne0 |
|- 2 =/= 0 |
5 |
|
divcan3 |
|- ( ( A e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( 2 x. A ) / 2 ) = A ) |
6 |
3 4 5
|
mp3an23 |
|- ( A e. CC -> ( ( 2 x. A ) / 2 ) = A ) |
7 |
|
2cnne0 |
|- ( 2 e. CC /\ 2 =/= 0 ) |
8 |
|
divdir |
|- ( ( A e. CC /\ A e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( A + A ) / 2 ) = ( ( A / 2 ) + ( A / 2 ) ) ) |
9 |
7 8
|
mp3an3 |
|- ( ( A e. CC /\ A e. CC ) -> ( ( A + A ) / 2 ) = ( ( A / 2 ) + ( A / 2 ) ) ) |
10 |
9
|
anidms |
|- ( A e. CC -> ( ( A + A ) / 2 ) = ( ( A / 2 ) + ( A / 2 ) ) ) |
11 |
2 6 10
|
3eqtr3rd |
|- ( A e. CC -> ( ( A / 2 ) + ( A / 2 ) ) = A ) |