Metamath Proof Explorer


Theorem lt2halves

Description: A sum is less than the whole if each term is less than half. (Contributed by NM, 13-Dec-2006)

Ref Expression
Assertion lt2halves ABCA<C2B<C2A+B<C

Proof

Step Hyp Ref Expression
1 3simpa ABCAB
2 rehalfcl CC2
3 2 2 jca CC2C2
4 3 3ad2ant3 ABCC2C2
5 lt2add ABC2C2A<C2B<C2A+B<C2+C2
6 1 4 5 syl2anc ABCA<C2B<C2A+B<C2+C2
7 recn CC
8 2halves CC2+C2=C
9 7 8 syl CC2+C2=C
10 9 breq2d CA+B<C2+C2A+B<C
11 10 3ad2ant3 ABCA+B<C2+C2A+B<C
12 6 11 sylibd ABCA<C2B<C2A+B<C