Metamath Proof Explorer


Theorem lt2add

Description: Adding both sides of two 'less than' relations. Theorem I.25 of Apostol p. 20. (Contributed by NM, 15-Aug-1999) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion lt2add ABCDA<CB<DA+B<C+D

Proof

Step Hyp Ref Expression
1 ltle ACA<CAC
2 1 ad2ant2r ABCDA<CAC
3 leltadd ABCDACB<DA+B<C+D
4 2 3 syland ABCDA<CB<DA+B<C+D