Metamath Proof Explorer


Theorem leltadd

Description: Adding both sides of two orderings. (Contributed by NM, 15-Aug-2008)

Ref Expression
Assertion leltadd A B C D A C B < D A + B < C + D

Proof

Step Hyp Ref Expression
1 ltleadd B A D C B < D A C B + A < D + C
2 1 ancomsd B A D C A C B < D B + A < D + C
3 2 ancom2s B A C D A C B < D B + A < D + C
4 3 ancom1s A B C D A C B < D B + A < D + C
5 recn A A
6 recn B B
7 addcom A B A + B = B + A
8 5 6 7 syl2an A B A + B = B + A
9 recn C C
10 recn D D
11 addcom C D C + D = D + C
12 9 10 11 syl2an C D C + D = D + C
13 8 12 breqan12d A B C D A + B < C + D B + A < D + C
14 4 13 sylibrd A B C D A C B < D A + B < C + D