Metamath Proof Explorer


Theorem lt2halvesd

Description: A sum is less than the whole if each term is less than half. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses rehalfcld.1 φA
lt2halvesd.2 φB
lt2halvesd.3 φC
lt2halvesd.4 φA<C2
lt2halvesd.5 φB<C2
Assertion lt2halvesd φA+B<C

Proof

Step Hyp Ref Expression
1 rehalfcld.1 φA
2 lt2halvesd.2 φB
3 lt2halvesd.3 φC
4 lt2halvesd.4 φA<C2
5 lt2halvesd.5 φB<C2
6 lt2halves ABCA<C2B<C2A+B<C
7 1 2 3 6 syl3anc φA<C2B<C2A+B<C
8 4 5 7 mp2and φA+B<C