| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xmetdcn2.1 |
|
| 2 |
|
xmetdcn2.2 |
|
| 3 |
|
xmetdcn2.3 |
|
| 4 |
|
metdcn.d |
|
| 5 |
|
metdcn.a |
|
| 6 |
|
metdcn.b |
|
| 7 |
|
metdcn.r |
|
| 8 |
|
metdcn.y |
|
| 9 |
|
metdcn.z |
|
| 10 |
|
metdcn.4 |
|
| 11 |
|
metdcn.5 |
|
| 12 |
2
|
xrsxmet |
|
| 13 |
12
|
a1i |
|
| 14 |
|
xmetcl |
|
| 15 |
4 5 6 14
|
syl3anc |
|
| 16 |
|
xmetcl |
|
| 17 |
4 8 9 16
|
syl3anc |
|
| 18 |
|
xmetcl |
|
| 19 |
4 8 6 18
|
syl3anc |
|
| 20 |
7
|
rphalfcld |
|
| 21 |
20
|
rpred |
|
| 22 |
|
xmetcl |
|
| 23 |
13 15 19 22
|
syl3anc |
|
| 24 |
20
|
rpxrd |
|
| 25 |
|
xmetcl |
|
| 26 |
4 5 8 25
|
syl3anc |
|
| 27 |
2
|
xmetrtri2 |
|
| 28 |
4 5 8 6 27
|
syl13anc |
|
| 29 |
23 26 24 28 10
|
xrlelttrd |
|
| 30 |
23 24 29
|
xrltled |
|
| 31 |
|
xmetlecl |
|
| 32 |
13 15 19 21 30 31
|
syl122anc |
|
| 33 |
|
xmetcl |
|
| 34 |
13 19 17 33
|
syl3anc |
|
| 35 |
|
xmetcl |
|
| 36 |
4 6 9 35
|
syl3anc |
|
| 37 |
|
xmetsym |
|
| 38 |
4 8 6 37
|
syl3anc |
|
| 39 |
|
xmetsym |
|
| 40 |
4 8 9 39
|
syl3anc |
|
| 41 |
38 40
|
oveq12d |
|
| 42 |
2
|
xmetrtri2 |
|
| 43 |
4 6 9 8 42
|
syl13anc |
|
| 44 |
41 43
|
eqbrtrd |
|
| 45 |
34 36 24 44 11
|
xrlelttrd |
|
| 46 |
34 24 45
|
xrltled |
|
| 47 |
|
xmetlecl |
|
| 48 |
13 19 17 21 46 47
|
syl122anc |
|
| 49 |
32 48
|
readdcld |
|
| 50 |
|
xmettri |
|
| 51 |
13 15 17 19 50
|
syl13anc |
|
| 52 |
32 48
|
rexaddd |
|
| 53 |
51 52
|
breqtrd |
|
| 54 |
|
xmetlecl |
|
| 55 |
13 15 17 49 53 54
|
syl122anc |
|
| 56 |
7
|
rpred |
|
| 57 |
32 48 56 29 45
|
lt2halvesd |
|
| 58 |
55 49 56 53 57
|
lelttrd |
|