Metamath Proof Explorer


Theorem xmettri

Description: Triangle inequality for the distance function of a metric space. Definition 14-1.1(d) of Gleason p. 223. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xmettri D ∞Met X A X B X C X A D B A D C + 𝑒 C D B

Proof

Step Hyp Ref Expression
1 simpl D ∞Met X A X B X C X D ∞Met X
2 simpr3 D ∞Met X A X B X C X C X
3 simpr1 D ∞Met X A X B X C X A X
4 simpr2 D ∞Met X A X B X C X B X
5 xmettri2 D ∞Met X C X A X B X A D B C D A + 𝑒 C D B
6 1 2 3 4 5 syl13anc D ∞Met X A X B X C X A D B C D A + 𝑒 C D B
7 xmetsym D ∞Met X C X A X C D A = A D C
8 1 2 3 7 syl3anc D ∞Met X A X B X C X C D A = A D C
9 8 oveq1d D ∞Met X A X B X C X C D A + 𝑒 C D B = A D C + 𝑒 C D B
10 6 9 breqtrd D ∞Met X A X B X C X A D B A D C + 𝑒 C D B