Metamath Proof Explorer


Theorem rexaddd

Description: The extended real addition operation when both arguments are real. Deduction version of rexadd . (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses rexaddd.1 φA
rexaddd.2 φB
Assertion rexaddd φA+𝑒B=A+B

Proof

Step Hyp Ref Expression
1 rexaddd.1 φA
2 rexaddd.2 φB
3 rexadd ABA+𝑒B=A+B
4 1 2 3 syl2anc φA+𝑒B=A+B