Metamath Proof Explorer


Theorem rexadd

Description: The extended real addition operation when both arguments are real. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion rexadd ABA+𝑒B=A+B

Proof

Step Hyp Ref Expression
1 rexr AA*
2 rexr BB*
3 xaddval A*B*A+𝑒B=ifA=+∞ifB=−∞0+∞ifA=−∞ifB=+∞0−∞ifB=+∞+∞ifB=−∞−∞A+B
4 1 2 3 syl2an ABA+𝑒B=ifA=+∞ifB=−∞0+∞ifA=−∞ifB=+∞0−∞ifB=+∞+∞ifB=−∞−∞A+B
5 renepnf AA+∞
6 ifnefalse A+∞ifA=+∞ifB=−∞0+∞ifA=−∞ifB=+∞0−∞ifB=+∞+∞ifB=−∞−∞A+B=ifA=−∞ifB=+∞0−∞ifB=+∞+∞ifB=−∞−∞A+B
7 5 6 syl AifA=+∞ifB=−∞0+∞ifA=−∞ifB=+∞0−∞ifB=+∞+∞ifB=−∞−∞A+B=ifA=−∞ifB=+∞0−∞ifB=+∞+∞ifB=−∞−∞A+B
8 renemnf AA−∞
9 ifnefalse A−∞ifA=−∞ifB=+∞0−∞ifB=+∞+∞ifB=−∞−∞A+B=ifB=+∞+∞ifB=−∞−∞A+B
10 8 9 syl AifA=−∞ifB=+∞0−∞ifB=+∞+∞ifB=−∞−∞A+B=ifB=+∞+∞ifB=−∞−∞A+B
11 7 10 eqtrd AifA=+∞ifB=−∞0+∞ifA=−∞ifB=+∞0−∞ifB=+∞+∞ifB=−∞−∞A+B=ifB=+∞+∞ifB=−∞−∞A+B
12 renepnf BB+∞
13 ifnefalse B+∞ifB=+∞+∞ifB=−∞−∞A+B=ifB=−∞−∞A+B
14 12 13 syl BifB=+∞+∞ifB=−∞−∞A+B=ifB=−∞−∞A+B
15 renemnf BB−∞
16 ifnefalse B−∞ifB=−∞−∞A+B=A+B
17 15 16 syl BifB=−∞−∞A+B=A+B
18 14 17 eqtrd BifB=+∞+∞ifB=−∞−∞A+B=A+B
19 11 18 sylan9eq ABifA=+∞ifB=−∞0+∞ifA=−∞ifB=+∞0−∞ifB=+∞+∞ifB=−∞−∞A+B=A+B
20 4 19 eqtrd ABA+𝑒B=A+B