| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rexr |  |-  ( A e. RR -> A e. RR* ) | 
						
							| 2 |  | rexr |  |-  ( B e. RR -> B e. RR* ) | 
						
							| 3 |  | xaddval |  |-  ( ( A e. RR* /\ B e. RR* ) -> ( A +e B ) = if ( A = +oo , if ( B = -oo , 0 , +oo ) , if ( A = -oo , if ( B = +oo , 0 , -oo ) , if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) ) ) | 
						
							| 4 | 1 2 3 | syl2an |  |-  ( ( A e. RR /\ B e. RR ) -> ( A +e B ) = if ( A = +oo , if ( B = -oo , 0 , +oo ) , if ( A = -oo , if ( B = +oo , 0 , -oo ) , if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) ) ) | 
						
							| 5 |  | renepnf |  |-  ( A e. RR -> A =/= +oo ) | 
						
							| 6 |  | ifnefalse |  |-  ( A =/= +oo -> if ( A = +oo , if ( B = -oo , 0 , +oo ) , if ( A = -oo , if ( B = +oo , 0 , -oo ) , if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) ) = if ( A = -oo , if ( B = +oo , 0 , -oo ) , if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) ) | 
						
							| 7 | 5 6 | syl |  |-  ( A e. RR -> if ( A = +oo , if ( B = -oo , 0 , +oo ) , if ( A = -oo , if ( B = +oo , 0 , -oo ) , if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) ) = if ( A = -oo , if ( B = +oo , 0 , -oo ) , if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) ) | 
						
							| 8 |  | renemnf |  |-  ( A e. RR -> A =/= -oo ) | 
						
							| 9 |  | ifnefalse |  |-  ( A =/= -oo -> if ( A = -oo , if ( B = +oo , 0 , -oo ) , if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) = if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) | 
						
							| 10 | 8 9 | syl |  |-  ( A e. RR -> if ( A = -oo , if ( B = +oo , 0 , -oo ) , if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) = if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) | 
						
							| 11 | 7 10 | eqtrd |  |-  ( A e. RR -> if ( A = +oo , if ( B = -oo , 0 , +oo ) , if ( A = -oo , if ( B = +oo , 0 , -oo ) , if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) ) = if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) | 
						
							| 12 |  | renepnf |  |-  ( B e. RR -> B =/= +oo ) | 
						
							| 13 |  | ifnefalse |  |-  ( B =/= +oo -> if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) = if ( B = -oo , -oo , ( A + B ) ) ) | 
						
							| 14 | 12 13 | syl |  |-  ( B e. RR -> if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) = if ( B = -oo , -oo , ( A + B ) ) ) | 
						
							| 15 |  | renemnf |  |-  ( B e. RR -> B =/= -oo ) | 
						
							| 16 |  | ifnefalse |  |-  ( B =/= -oo -> if ( B = -oo , -oo , ( A + B ) ) = ( A + B ) ) | 
						
							| 17 | 15 16 | syl |  |-  ( B e. RR -> if ( B = -oo , -oo , ( A + B ) ) = ( A + B ) ) | 
						
							| 18 | 14 17 | eqtrd |  |-  ( B e. RR -> if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) = ( A + B ) ) | 
						
							| 19 | 11 18 | sylan9eq |  |-  ( ( A e. RR /\ B e. RR ) -> if ( A = +oo , if ( B = -oo , 0 , +oo ) , if ( A = -oo , if ( B = +oo , 0 , -oo ) , if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) ) = ( A + B ) ) | 
						
							| 20 | 4 19 | eqtrd |  |-  ( ( A e. RR /\ B e. RR ) -> ( A +e B ) = ( A + B ) ) |