| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl |  |-  ( ( x = A /\ y = B ) -> x = A ) | 
						
							| 2 | 1 | eqeq1d |  |-  ( ( x = A /\ y = B ) -> ( x = +oo <-> A = +oo ) ) | 
						
							| 3 |  | simpr |  |-  ( ( x = A /\ y = B ) -> y = B ) | 
						
							| 4 | 3 | eqeq1d |  |-  ( ( x = A /\ y = B ) -> ( y = -oo <-> B = -oo ) ) | 
						
							| 5 | 4 | ifbid |  |-  ( ( x = A /\ y = B ) -> if ( y = -oo , 0 , +oo ) = if ( B = -oo , 0 , +oo ) ) | 
						
							| 6 | 1 | eqeq1d |  |-  ( ( x = A /\ y = B ) -> ( x = -oo <-> A = -oo ) ) | 
						
							| 7 | 3 | eqeq1d |  |-  ( ( x = A /\ y = B ) -> ( y = +oo <-> B = +oo ) ) | 
						
							| 8 | 7 | ifbid |  |-  ( ( x = A /\ y = B ) -> if ( y = +oo , 0 , -oo ) = if ( B = +oo , 0 , -oo ) ) | 
						
							| 9 |  | oveq12 |  |-  ( ( x = A /\ y = B ) -> ( x + y ) = ( A + B ) ) | 
						
							| 10 | 4 9 | ifbieq2d |  |-  ( ( x = A /\ y = B ) -> if ( y = -oo , -oo , ( x + y ) ) = if ( B = -oo , -oo , ( A + B ) ) ) | 
						
							| 11 | 7 10 | ifbieq2d |  |-  ( ( x = A /\ y = B ) -> if ( y = +oo , +oo , if ( y = -oo , -oo , ( x + y ) ) ) = if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) | 
						
							| 12 | 6 8 11 | ifbieq12d |  |-  ( ( x = A /\ y = B ) -> if ( x = -oo , if ( y = +oo , 0 , -oo ) , if ( y = +oo , +oo , if ( y = -oo , -oo , ( x + y ) ) ) ) = if ( A = -oo , if ( B = +oo , 0 , -oo ) , if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) ) | 
						
							| 13 | 2 5 12 | ifbieq12d |  |-  ( ( x = A /\ y = B ) -> if ( x = +oo , if ( y = -oo , 0 , +oo ) , if ( x = -oo , if ( y = +oo , 0 , -oo ) , if ( y = +oo , +oo , if ( y = -oo , -oo , ( x + y ) ) ) ) ) = if ( A = +oo , if ( B = -oo , 0 , +oo ) , if ( A = -oo , if ( B = +oo , 0 , -oo ) , if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) ) ) | 
						
							| 14 |  | df-xadd |  |-  +e = ( x e. RR* , y e. RR* |-> if ( x = +oo , if ( y = -oo , 0 , +oo ) , if ( x = -oo , if ( y = +oo , 0 , -oo ) , if ( y = +oo , +oo , if ( y = -oo , -oo , ( x + y ) ) ) ) ) ) | 
						
							| 15 |  | c0ex |  |-  0 e. _V | 
						
							| 16 |  | pnfex |  |-  +oo e. _V | 
						
							| 17 | 15 16 | ifex |  |-  if ( B = -oo , 0 , +oo ) e. _V | 
						
							| 18 |  | mnfxr |  |-  -oo e. RR* | 
						
							| 19 | 18 | elexi |  |-  -oo e. _V | 
						
							| 20 | 15 19 | ifex |  |-  if ( B = +oo , 0 , -oo ) e. _V | 
						
							| 21 |  | ovex |  |-  ( A + B ) e. _V | 
						
							| 22 | 19 21 | ifex |  |-  if ( B = -oo , -oo , ( A + B ) ) e. _V | 
						
							| 23 | 16 22 | ifex |  |-  if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) e. _V | 
						
							| 24 | 20 23 | ifex |  |-  if ( A = -oo , if ( B = +oo , 0 , -oo ) , if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) e. _V | 
						
							| 25 | 17 24 | ifex |  |-  if ( A = +oo , if ( B = -oo , 0 , +oo ) , if ( A = -oo , if ( B = +oo , 0 , -oo ) , if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) ) e. _V | 
						
							| 26 | 13 14 25 | ovmpoa |  |-  ( ( A e. RR* /\ B e. RR* ) -> ( A +e B ) = if ( A = +oo , if ( B = -oo , 0 , +oo ) , if ( A = -oo , if ( B = +oo , 0 , -oo ) , if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) ) ) |