| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  𝑥  =  𝐴 ) | 
						
							| 2 | 1 | eqeq1d | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  ( 𝑥  =  +∞  ↔  𝐴  =  +∞ ) ) | 
						
							| 3 |  | simpr | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  𝑦  =  𝐵 ) | 
						
							| 4 | 3 | eqeq1d | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  ( 𝑦  =  -∞  ↔  𝐵  =  -∞ ) ) | 
						
							| 5 | 4 | ifbid | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  if ( 𝑦  =  -∞ ,  0 ,  +∞ )  =  if ( 𝐵  =  -∞ ,  0 ,  +∞ ) ) | 
						
							| 6 | 1 | eqeq1d | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  ( 𝑥  =  -∞  ↔  𝐴  =  -∞ ) ) | 
						
							| 7 | 3 | eqeq1d | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  ( 𝑦  =  +∞  ↔  𝐵  =  +∞ ) ) | 
						
							| 8 | 7 | ifbid | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  if ( 𝑦  =  +∞ ,  0 ,  -∞ )  =  if ( 𝐵  =  +∞ ,  0 ,  -∞ ) ) | 
						
							| 9 |  | oveq12 | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  ( 𝑥  +  𝑦 )  =  ( 𝐴  +  𝐵 ) ) | 
						
							| 10 | 4 9 | ifbieq2d | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  if ( 𝑦  =  -∞ ,  -∞ ,  ( 𝑥  +  𝑦 ) )  =  if ( 𝐵  =  -∞ ,  -∞ ,  ( 𝐴  +  𝐵 ) ) ) | 
						
							| 11 | 7 10 | ifbieq2d | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  if ( 𝑦  =  +∞ ,  +∞ ,  if ( 𝑦  =  -∞ ,  -∞ ,  ( 𝑥  +  𝑦 ) ) )  =  if ( 𝐵  =  +∞ ,  +∞ ,  if ( 𝐵  =  -∞ ,  -∞ ,  ( 𝐴  +  𝐵 ) ) ) ) | 
						
							| 12 | 6 8 11 | ifbieq12d | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  if ( 𝑥  =  -∞ ,  if ( 𝑦  =  +∞ ,  0 ,  -∞ ) ,  if ( 𝑦  =  +∞ ,  +∞ ,  if ( 𝑦  =  -∞ ,  -∞ ,  ( 𝑥  +  𝑦 ) ) ) )  =  if ( 𝐴  =  -∞ ,  if ( 𝐵  =  +∞ ,  0 ,  -∞ ) ,  if ( 𝐵  =  +∞ ,  +∞ ,  if ( 𝐵  =  -∞ ,  -∞ ,  ( 𝐴  +  𝐵 ) ) ) ) ) | 
						
							| 13 | 2 5 12 | ifbieq12d | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  if ( 𝑥  =  +∞ ,  if ( 𝑦  =  -∞ ,  0 ,  +∞ ) ,  if ( 𝑥  =  -∞ ,  if ( 𝑦  =  +∞ ,  0 ,  -∞ ) ,  if ( 𝑦  =  +∞ ,  +∞ ,  if ( 𝑦  =  -∞ ,  -∞ ,  ( 𝑥  +  𝑦 ) ) ) ) )  =  if ( 𝐴  =  +∞ ,  if ( 𝐵  =  -∞ ,  0 ,  +∞ ) ,  if ( 𝐴  =  -∞ ,  if ( 𝐵  =  +∞ ,  0 ,  -∞ ) ,  if ( 𝐵  =  +∞ ,  +∞ ,  if ( 𝐵  =  -∞ ,  -∞ ,  ( 𝐴  +  𝐵 ) ) ) ) ) ) | 
						
							| 14 |  | df-xadd | ⊢  +𝑒   =  ( 𝑥  ∈  ℝ* ,  𝑦  ∈  ℝ*  ↦  if ( 𝑥  =  +∞ ,  if ( 𝑦  =  -∞ ,  0 ,  +∞ ) ,  if ( 𝑥  =  -∞ ,  if ( 𝑦  =  +∞ ,  0 ,  -∞ ) ,  if ( 𝑦  =  +∞ ,  +∞ ,  if ( 𝑦  =  -∞ ,  -∞ ,  ( 𝑥  +  𝑦 ) ) ) ) ) ) | 
						
							| 15 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 16 |  | pnfex | ⊢ +∞  ∈  V | 
						
							| 17 | 15 16 | ifex | ⊢ if ( 𝐵  =  -∞ ,  0 ,  +∞ )  ∈  V | 
						
							| 18 |  | mnfxr | ⊢ -∞  ∈  ℝ* | 
						
							| 19 | 18 | elexi | ⊢ -∞  ∈  V | 
						
							| 20 | 15 19 | ifex | ⊢ if ( 𝐵  =  +∞ ,  0 ,  -∞ )  ∈  V | 
						
							| 21 |  | ovex | ⊢ ( 𝐴  +  𝐵 )  ∈  V | 
						
							| 22 | 19 21 | ifex | ⊢ if ( 𝐵  =  -∞ ,  -∞ ,  ( 𝐴  +  𝐵 ) )  ∈  V | 
						
							| 23 | 16 22 | ifex | ⊢ if ( 𝐵  =  +∞ ,  +∞ ,  if ( 𝐵  =  -∞ ,  -∞ ,  ( 𝐴  +  𝐵 ) ) )  ∈  V | 
						
							| 24 | 20 23 | ifex | ⊢ if ( 𝐴  =  -∞ ,  if ( 𝐵  =  +∞ ,  0 ,  -∞ ) ,  if ( 𝐵  =  +∞ ,  +∞ ,  if ( 𝐵  =  -∞ ,  -∞ ,  ( 𝐴  +  𝐵 ) ) ) )  ∈  V | 
						
							| 25 | 17 24 | ifex | ⊢ if ( 𝐴  =  +∞ ,  if ( 𝐵  =  -∞ ,  0 ,  +∞ ) ,  if ( 𝐴  =  -∞ ,  if ( 𝐵  =  +∞ ,  0 ,  -∞ ) ,  if ( 𝐵  =  +∞ ,  +∞ ,  if ( 𝐵  =  -∞ ,  -∞ ,  ( 𝐴  +  𝐵 ) ) ) ) )  ∈  V | 
						
							| 26 | 13 14 25 | ovmpoa | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( 𝐴  +𝑒  𝐵 )  =  if ( 𝐴  =  +∞ ,  if ( 𝐵  =  -∞ ,  0 ,  +∞ ) ,  if ( 𝐴  =  -∞ ,  if ( 𝐵  =  +∞ ,  0 ,  -∞ ) ,  if ( 𝐵  =  +∞ ,  +∞ ,  if ( 𝐵  =  -∞ ,  -∞ ,  ( 𝐴  +  𝐵 ) ) ) ) ) ) |