Metamath Proof Explorer


Theorem xrltled

Description: 'Less than' implies 'less than or equal to' for extended reals. Deduction form of xrltle . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses xrltled.a φA*
xrltled.b φB*
xrltled.altb φA<B
Assertion xrltled φAB

Proof

Step Hyp Ref Expression
1 xrltled.a φA*
2 xrltled.b φB*
3 xrltled.altb φA<B
4 xrltle A*B*A<BAB
5 1 2 4 syl2anc φA<BAB
6 3 5 mpd φAB