Metamath Proof Explorer


Theorem xrltle

Description: 'Less than' implies 'less than or equal' for extended reals. (Contributed by NM, 19-Jan-2006)

Ref Expression
Assertion xrltle A*B*A<BAB

Proof

Step Hyp Ref Expression
1 orc A<BA<BA=B
2 xrleloe A*B*ABA<BA=B
3 1 2 imbitrrid A*B*A<BAB