Metamath Proof Explorer


Theorem xrleloe

Description: 'Less than or equal' expressed in terms of 'less than' or 'equals', for extended reals. (Contributed by NM, 19-Jan-2006)

Ref Expression
Assertion xrleloe A*B*ABA<BA=B

Proof

Step Hyp Ref Expression
1 xrlenlt A*B*AB¬B<A
2 xrlttri B*A*B<A¬B=AA<B
3 2 ancoms A*B*B<A¬B=AA<B
4 3 con2bid A*B*B=AA<B¬B<A
5 eqcom B=AA=B
6 5 orbi1i B=AA<BA=BA<B
7 orcom A=BA<BA<BA=B
8 6 7 bitri B=AA<BA<BA=B
9 4 8 bitr3di A*B*¬B<AA<BA=B
10 1 9 bitrd A*B*ABA<BA=B