Description: 'Less than' implies 'less than or equal' for extended reals. (Contributed by NM, 19-Jan-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | xrltle | |- ( ( A e. RR* /\ B e. RR* ) -> ( A < B -> A <_ B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc | |- ( A < B -> ( A < B \/ A = B ) ) |
|
2 | xrleloe | |- ( ( A e. RR* /\ B e. RR* ) -> ( A <_ B <-> ( A < B \/ A = B ) ) ) |
|
3 | 1 2 | syl5ibr | |- ( ( A e. RR* /\ B e. RR* ) -> ( A < B -> A <_ B ) ) |