Metamath Proof Explorer
Description: Transitive law for ordering on extended reals. (Contributed by Mario
Carneiro, 23-Aug-2015)
|
|
Ref |
Expression |
|
Hypotheses |
xrlttrd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
|
|
xrlttrd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
|
|
xrlttrd.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) |
|
|
xrlelttrd.4 |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
|
|
xrlelttrd.5 |
⊢ ( 𝜑 → 𝐵 < 𝐶 ) |
|
Assertion |
xrlelttrd |
⊢ ( 𝜑 → 𝐴 < 𝐶 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
xrlttrd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
2 |
|
xrlttrd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
3 |
|
xrlttrd.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) |
4 |
|
xrlelttrd.4 |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
5 |
|
xrlelttrd.5 |
⊢ ( 𝜑 → 𝐵 < 𝐶 ) |
6 |
|
xrlelttr |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
7 |
1 2 3 6
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
8 |
4 5 7
|
mp2and |
⊢ ( 𝜑 → 𝐴 < 𝐶 ) |