Metamath Proof Explorer


Theorem xrlelttr

Description: Transitive law for ordering on extended reals. (Contributed by NM, 19-Jan-2006)

Ref Expression
Assertion xrlelttr ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) → ( ( 𝐴𝐵𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) )

Proof

Step Hyp Ref Expression
1 xrleloe ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐴𝐵 ↔ ( 𝐴 < 𝐵𝐴 = 𝐵 ) ) )
2 1 3adant3 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) → ( 𝐴𝐵 ↔ ( 𝐴 < 𝐵𝐴 = 𝐵 ) ) )
3 xrlttr ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) → ( ( 𝐴 < 𝐵𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) )
4 3 expd ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) → ( 𝐴 < 𝐵 → ( 𝐵 < 𝐶𝐴 < 𝐶 ) ) )
5 breq1 ( 𝐴 = 𝐵 → ( 𝐴 < 𝐶𝐵 < 𝐶 ) )
6 5 biimprd ( 𝐴 = 𝐵 → ( 𝐵 < 𝐶𝐴 < 𝐶 ) )
7 6 a1i ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) → ( 𝐴 = 𝐵 → ( 𝐵 < 𝐶𝐴 < 𝐶 ) ) )
8 4 7 jaod ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) → ( ( 𝐴 < 𝐵𝐴 = 𝐵 ) → ( 𝐵 < 𝐶𝐴 < 𝐶 ) ) )
9 2 8 sylbid ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) → ( 𝐴𝐵 → ( 𝐵 < 𝐶𝐴 < 𝐶 ) ) )
10 9 impd ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) → ( ( 𝐴𝐵𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) )